Trouver le ou les antécédents d'une valeur a par une fonction f revient à résoudre équation f(x)=a f ( x ) = a . Exemple : Calculer l' antécédent de 1 par la fonction affine f(x)=2x+1 f ( x ) = 2 x + 1 c'est résoudre 2x+1=1⟺x=0 2 x + 1 = 1 ⟺ x = 0 .
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
C'est l'outil mathématique qui, à un nombre, fait correspondre son carré. On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
L'antécédent de 2 par f est \dfrac{−1}{4}.
Le seul antécédent de 8 par la fonction f est donc x = 4.
L'antécédent de 20 par la fonction g est 3. Lire des images sur une représentation graphique. On cherche l'image du nombre 2. on repère le nombre 2 sur l'axe des abscisses et on dessine un chemin vertical jusqu'à la courbe.
Quel est l'antécédent de -11 par la fonction f ? L'antécédent de −11 par la fonction f est 2. L'antécédent de −11 par la fonction f est -\dfrac{11}{7}.
Quel est l'antécédent de -3 par la fonction f ? L'antécédent de −3 par la fonction f est 0.
Le seul antécédent de 4 par f est -2.
Pour déterminer un antécédent d'un nombre à l'aide d'une formule, il faut remplacer f ( x ) f(x) f(x) par la valeur du nombre dans la formule puis trouver une valeur de x x x qui la vérifie.
Pour trouver les antécédents de 10 par la fonction f(x)=x²+1, on résout l'équation x²+1=10. On obtient d'abord x²=10-1, puis x²=9, puis x²-9=0, puis x²-3²=0, puis (x+3)(x-3)=0, puis x+3=0 ou x-3=0. Donc x=-3 ou x=3.
2) Nous voyons graphiquement que (3) = 9 et que (−3) = 9 Donc les antécédents de 9 par sont 3 et -3 .
Pour déterminer le (ou les) antécédent(s) éventuel(s) de a, on trace la droite (d):y=a, on lit les abscisses des points d'intersection de (Cf) et de (d), ce sont les antécédents ! Moralité : les antécédents se lisent en ABSCISSES!
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Si f(x)=x–1x–3, alors le nombre 1 n'a pas d'antécédent car il n'existe aucun nombre x tel que x–1x–3=1, ce qui est équivalent à x – 1 = x + 3.
1. Fait antérieur sur lequel on appuie un raisonnement, une conclusion : Invoquer un antécédent. 2. Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
Calculer l'antécédent de 22 par la fonction f. Réponse : pour déterminer l'antécédent d'un nombre par une fonction affine, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 22 autrement dit 7x - 6 = 22, soit 7x = 28 et donc x=287 = 4, donc l'antécédent de 22 par f est 4.
Réponse: L'antécédent de 6 par la fonction f est 0,5.
Si M a pour abscisse x, alors son ordonnée est f(x). donc l'image de 2 par f est 2. donc l'image de -2 par f est 2.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
On lit donc que l'image de 7 est 4. On peut noter : (7) = 4.
On dit que 9 est l'image de -3 par la fonction f.
Antécédent : C'est ce qui était là avant, le nombre de départ qui a permis de trouver le résultat. L'antécédent de y, c'est x.
Or il existe deux nombres dont le carré soit égal à 1 : 12 = 1 et (−1)2 = 1. Le nombre 0 admet donc deux antécédents par ℎ qui sont 1 et −1.