L'intérêt du Big Data, c'est de pouvoir tirer profit de nouvelles données produites par tous les acteurs – les entreprises, les particuliers, les scientifiques et les institutions publiques – dans le but d'optimiser son offre commerciale, ses services, développer la recherche et le développement mais aussi créer des ...
Entropie incontrôlée et infobésité Le big data est par sa définition même sujet à un autre danger intrinsèque majeur : le « déluge de données » (data deluge). Celui-ci correspond à une surproduction d'informations que l'on ne sait pas traiter correctement, ou sinon au détriment de leur véracité ou de leur valeur.
Les limites des statistiques
Le Big Data se fonde entièrement sur les statistiques. Il s'agit de récolter et d'analyser un maximum de données afin d'en dégager des tendances et donc des objectifs pour l'entreprise. Cependant, il serait vain de croire qu'il est la clef de l'analyse prédictive.
Amazon. Amazon, société de commerce en ligne, fait partie de ces structures qui font appel au Big Data pour orienter leur stratégie commerciale. Pour ce faire, elle stocke toutes les informations relatives à ses clients afin de définir leurs parcours d'achat et de voir leurs préférences.
Le Big Data est aujourd'hui bien plus accessible grâce à des outils conçus à l'échelle des PME. Vous pouvez, dans un premier temps, utiliser des données déjà présentes dans le fonctionnement de votre entreprise: ses réseaux sociaux, son site internet, son CRM, les données des services RH, etc.
Avantages et inconvénients de l'utilisation du Big Data
La réduction des coûts ; La création de produits et services améliorés ou nouveaux pour répondre aux différents besoins des clients ; La possibilité d'avoir des retours en temps réel ; Une meilleure connaissance du marché.
Le Big Data nécessite du stockage. Votre solution de stockage peut se trouver dans le cloud, sur site, ou les deux à la fois. Vous pouvez stocker vos données sous la forme de votre choix et imposer à ces jeux de données vos exigences de traitement, ainsi que les moteurs de traitement nécessaires, à la demande.
On parle depuis quelques années du phénomène de big data , que l'on traduit souvent par « données massives ». Avec le développement des nouvelles technologies, d'internet et des réseaux sociaux ces vingt dernières années, la production de données numériques a été de plus en plus nombreuse : textes, photos, vidéos, etc.
À retenir: - Le big data est l'ensemble des données consommateur et marché produites sur Internet, via les réseaux sociaux, notamment. - Le big data utilise des techniques informatiques NoSQL pour assurer un traitement rapide de données volumineuses et de formats variés.
L'objectif principal du Big Data est de réussir à faire apparaître des enseignements (insights) et des connexions entre de gros volumes de données de nature hétérogène qui seraient impossible à obtenir avec les méthodes classiques d'analyse des données.
La donnée est également un élément stratégique pour les banques face aux nouvelles attentes de leurs clients, habitués par les grandes marques, les GAFA ou encore Netflix, à des services toujours plus personnalisés en fonction de leurs habitudes et de leurs comportements d'achat.
Un Master Big Data peut signifier un débouché vers de nombreuses entreprises. Ces dernières ont en effet besoin de personnel professionnel pour gérer des données massives. Une formation en Big Data sert à obtenir des informations pertinentes permettant d'aider à la prise de décision.
IBM est le plus grand fournisseur de produits et services liés au Big Data. Les solutions IBM Big Data fournissent des fonctionnalités telles que le stockage des données, la gestion des données et l'analyse des données.
La data c'est quoi ? La data c'est tout simplement l'information dématérialisée capable de circuler à travers un réseau de télécommunication ou informatique. Plus concrètement, lorsque nous naviguons sur internet, nous déposons des données.
Le traitement des Big Data requiert des algorithmes et une nouvelle méthode de programmation, plutôt que de simplement ajouter du matériel supplémentaire. Une solution largement utilisée est l'indexation et le partitionnement des données – cela apporte un meilleur accès.
Un exemple d'entreprise qui utilise le Big Data Analytics pour augmenter la fidélisation de la clientèle est Amazon. Amazon collecte toutes les données sur ses clients telles que leurs noms, adresses, historique de recherche, paiements, etc. afin de pouvoir offrir une expérience véritablement personnalisée.
Il existe 3 grands axes du Big Data marketing : L'axe client : il permet d'aider les professionnels du marketing digital à comprendre leur audience et mieux cibler leurs clients. L'axe financier : il permet d'évaluer et mesurer ses performances afin d'être plus efficace dans ses actions financières.
La firme a constitué une équipe Big Data composée de plus de 200 Data Scientists, analystes et ingénieurs; tickets de caisse, retours produits, cartes de fidélité mais également données externes vont être passées au crible de ces experts afin d'améliorer les ventes et le taux de conversion du géant suédois.
Le Gartner donne une vue très mnémotechnique du concept du Big Data, qui répond à la problématique des 3V : volumes de données, variété des données (multi-source) et vélocité en termes de collecte des données, stockage et analyse.