Les satellites bénéficient d'une forte immunité aux désastres naturels et par rapport aux systèmes de communication terrestres, leurs coûts sont faibles. Leurs principaux inconvénients ont trait à l'importance des coûts de lancement et pour certains d'entre eux, aux délais de transmission et aux phénomènes d'échos.
Ils ont une application commerciale dans les domaines de la météorologie, de l'Observation de la Terre (dite Télédétection), des télécommunications, de la navigation. Ils génèrent des revenus directs (satellites de communications) ou induits (météorologie, observation de la terre civile et militaire, navigation, etc.).
Les débris spatiaux finissent par brûler en grande partie dans l'atmosphère terrestre lors de leur rentrée atmosphérique, mais de 10 % à 40 % de leur masse reste intacte et revient sur la Terre.
La durée de vie d'un satellite, variable selon le type de mission, peut atteindre quinze ans. Les progrès de l'électronique permettent également de concevoir des microsatellites capables d'effectuer des missions élaborées.
Quelles sont les principales caractéristiques des satellites ? Il existe plusieurs formes (elliptique, circulaire) et types (inclinée, géostationnaire, polaire, héliosynchrone) d'orbite.
L'orbite terrestre est blindée de débris spatiaux. Ces objets artificiels, résidus de missions spatiales (principalement des satellites et étages de fusées), sont une véritable pollution qui commencent à préoccuper sérieusement les agences spatiales. Pour préserver l'environnement spatial, il y a urgence à agir.
Nombre de satellites en orbite par pays à l'échelle mondiale 2022. Cette statistique représente le nombre de satellites en orbite dans le monde au 30 avril 2022, par pays opérateur. La Chine avait 541 satellites opérant en orbite à ce moment-là, tandis que le nombre total de satellites en orbite approchait les 5.465.
Pour rester en orbite, un satellite doit avoir une très grande vitesse, qui dépend de sa hauteur. Pour une orbite circulaire à 300 km au-dessus de la surface de la Terre, il faut par exemple une vitesse de 7,8 km/s (28 000 km/h).
Soit un satellite tournant autour de la Terre à 7,86 km/s, sur une orbite circulaire, à 200 km d'altitude. Si en un point situé à cette altitude, au lieu de cette vitesse de 7.86 km/s nous lui donnons 8,72 km/s, il ira jusqu'à un apogée situé à 4 191 km . Avec 9,42 km/s, il ira jusqu'à un apogée situé à 10 400 km .
Les microsatellites pèsent de 10 à 100 kg. À titre comparatif, on montre la silhouette d'un loup. Cinquième catégorie : nanosatellite, dont le CubeSat, avec une image du CubeSat Ex-Alta 1. Les nanosatellites pèsent de 1 à 10 kg.
Même si l'atmosphère de la Terre, à quelques centaines de kilomètres d'altitude, est extrêmement ténue, le frottement contre les molécules d'air résiduelles des satellites artificiels réduit leur énergie et les fait redescendre progressivement. Plus leur orbite est basse, plus ils retombent vite sur Terre.
L'organisme chargé de veiller à ce que les objectifs de chacune de ces missions soient atteints est le Centre européen de contrôle des satellites ou ESOC (European Space Operations Centre). Sis à Darmstadt, en Allemagne, il fait partie de l' Agence spatiale européenne.
La France est le premier pays pour les activités spatiales d'Airbus, avec plus de 6000 employés répartis principalement à Toulouse, Elancourt et Sophia Antipolis. C'est là que sont pensés, conçus, fabriqués, testés et opérés la grande majorité des satellites d'Airbus.
Le plus gros inconvénient est sans aucun doute la latence très importable, le fameux “ping” que les joueurs de jeux-vidéos connaissent bien par exemple. Celui-ci se situe autour de 650 millisecondes, dix fois plus qu'avec le réseau terrestre.
Il faut aussi noter que tous les satellites ne sont pas visibles partout. Il peut arriver qu'une faible inclinaison de l'orbite ne mène pas le satellite à la latitude de l'observateur. Un satellite sur une orbite géosynchrone peut ne jamais passer à une heure favorable (par exemple, sur une orbite midi-minuit).
Un récepteur GNSS a besoin d'un minimum de 4 satellites pour être en mesure de calculer sa propre position. Trois satellites vont déterminer la latitude, longitude, et la hauteur. Tandis que le quatrième permet de synchroniser l'horloge interne du récepteur.
La plupart des satellites sont à moins de 2000 kilomètres d'altitude : c'est ce qu'on appelle l'orbite basse. A 500 kilomètres, ils mettront une heure et demie ; à 2000 kilomètres, ils prendront deux heures pour faire un tour complet.
Chaque satellite ne mesure que quelques mètres de côté, panneaux solaires compris, et n'émettent pas de lumière propre. S'ils brillent dans le ciel nocturne, c'est à cause du Soleil.
Le diamètre de Ganymède, nommé à l'international Jupiter III, est conséquent: 5268 kilomètres. Ce qui fait de lui le plus gros satellite du système solaire, avec une masse de deux fois la Lune et des poussières.
Par conséquent, il existe un lien direct entre la distance à la Terre et la vitesse orbitale du satellite. A une distance de 36 000 km, le temps de parcours de l'orbite est de 24 heures, ce qui correspond au temps que prend la Terre pour tourner sur elle-même.
Les satellites doivent s'auto-alimenter. Cela se fait généralement au moyen de panneaux solaires (ou « ailes ») recouverts de cellules solaires sensibles à la lumière. Les panneaux font plusieurs mètres de long et doivent être repliés pendant le lancement.
L'orbite d'un satellite est maintenue en équilibrant deux facteurs : sa vitesse (la vitesse requise pour se déplacer en ligne droite) et l'attraction gravitationnelle de la Terre. L'équilibre des deux forces le maintient sur la même orbite, qui est une ligne circulaire qui tourne autour de la Terre.
Astérix est le premier satellite artificiel français lancé le 26 novembre 1965 à 15 h 47 min 21 s heure de Paris par une fusée Diamant-A depuis le Centre interarmées d'essais d'engins spéciaux d'Hammaguir, en Algérie.
En revanche, les satellites de Starlink, positionnés en orbite basse (550 kilomètres d'altitude) et non plus en position géostationnaire (36 000 kilomètres), renversent le rapport de force : leur débit théorique supporte la comparaison avec un très bon réseau 4G et, surtout, la vitesse de communication des données ...
Actuellement, des pays comme les États-Unis, la Russie, la Chine, l'Inde, le Japon et quelques pays européens disposent de capacités adéquates dans le domaine de la fabrication de satellites.