diviseurs de 270 : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 27 ; 30 ; 45 ; 54 ; 90 ; 135 ; 270.
Les diviseurs d'un nombre
En d'autres mots, un nombre entier est un diviseur d'un autre nombre si le quotient est un nombre entier. L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 .
Par exemple : 378 ÷ 7 = 54 ; le reste de la division euclidienne de 378 par 7 est égal à 0, donc 7 est un diviseur de 378.
Remarque : Le nombre 1 n'est pas premier car il n'a qu'un seul diviseur.
les diviseurs de 385 sont 1, 5, 7, 11, 35, 55, 77 et 385.
On peut décomposer 324 en produit de facteurs premiers pour aider : 324 = 22 × 34. Les diviseurs de 324 sont 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 27 ; 36 ; 54 ; 81 ; 108 ; 162 ; 324.
Le nombre de lots doit tre le plus grand possible, donc il est le PGCD des nombres 378 et 270 : le plus grand nombre de lots possible est donc 54.
Le plus grand commun diviseur des nombres 378 et 270 est 54.
Calculer le PPCM
Le plus petit commun multiple est le produit de tous les facteurs dans le plus grand nombre de leur occurrence. Le plus petit commun multiple de 84 et 270 est 3 780.
Plus formellement, un nombre parfait n est un entier tel que σ(n) = 2n où σ(n) est la somme des diviseurs positifs de n. Ainsi 6 est un nombre parfait car ses diviseurs entiers sont 1, 2, 3 et 6, et il vérifie bien 2 × 6 = 12 = 1 + 2 + 3 + 6, ou encore 6 = 1 + 2 + 3.
Le nombre de diviseurs d'un entier n est le produit des puissances apparaissant dans sa décomposition en facteurs premiers, chacune augmentée de 1.
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. a est un diviseur de b (au sens « large »).
Un nombre premier est un entier naturel qui admet seulement deux diviseurs distincts entiers et positifs : 1 et le nombre considéré lui-même. Puisque tout nombre a pour diviseurs 1 et lui-même, comme le montre l'égalité n = 1 × n, les nombres premiers sont ceux qui n'ont pas d'autre diviseur.
En combinant les puissances des nombres mis en jeu, on liste l'ensemble des diviseurs demandés. Pour 364 : 1, 2, 7, 13, 22, 2 × 7, 2 × 13, 22 × 13, 7 × 13, 22 × 7 × 13. Pour 154 : 1, 2, 7, 11, 2 × 7, 2 × 11, 7 × 11, 2 × 7 × 11.
Les diviseurs de 51 sont : 1,3,17,51. Le seul diviseur commun est 1, donc 40 et 51 sont premiers entre eux. Définition 3 : Parmi les diviseurs communs à deux nombres et , le plus grand de ces diviseurs est appelé PGCD de et , noté PGCD( , ).
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
Les diviseurs de 35 sont : 1 ; 5 ; 7 ; 35.