Définition. Deux vecteurs sont dits orthogonaux si leurs directions sont perpendiculaires. Exemple : Sur le schéma ci-dessous, AB est un représentant du vecteur u et AC est un représentant du vecteur v . Comme les droites (AB) et (AC) sont perpendiculaires, les vecteurs u et v sont orthogonaux.
Les vecteurs sont parallèles si ⃑ 𝐴 = 𝑘 ⃑ 𝐵 , où 𝑘 est une constante réelle non nulle. Les vecteurs sont orthogonaux si ⃑ 𝐴 ⋅ ⃑ 𝐵 = 0 .
On rappelle que deux vecteurs sont perpendiculaires si leur produit scalaire est égal à 0. Par conséquent, on peut répondre à la question : les vecteurs ⃑ 𝐴 = ( 1 ; 2 ) et ⃑ 𝐵 = ( − 2 ; 1 ) sont perpendiculaires.
On peut aussi donner un sens à deux parties orthogonales : A et B sont orthogonales si ⟨x,y⟩=0 ⟨ x , y ⟩ = 0 pour tout x∈A x ∈ A et tout y∈B y ∈ B . Pour X⊂E X ⊂ E , X⊥ est alors la plus grande partie de E orthogonale à X .
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Si une droite (d) est orthogonale à deux droites sécantes du plan P, alors elle est orthogonale au plan P.
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Deux droites (d) et (d') sont orthogonales si et seulement si leurs parallèles respectives passant par un même point sont perpendiculaires. Soit une droite (d) de vecteur directeur et un plan P. La droite (d) est orthogonale au plan P si le vecteur est orthogonal à tous les vecteurs du plan P.
Ces deux vecteurs→u et →v sont colinéaires si z→vz→u z v → z u → est un réel. Ils sont orthogonaux si ce quotient est un imaginaire pur. Le plan complexe est muni d'un repère orthonormal direct (O;→u;→v) ( O ; u → ; v → ) (…).
On rappelle que deux droites sont orthogonales si et seulement si leurs vecteurs directeurs sont orthogonaux, c'est-à-dire si le produit scalaire de ces deux vecteurs est nul.
en géométrie plane, c'est une projection telle que les deux droites — la droite sur laquelle on projette et la direction de projection — sont perpendiculaires ; en géométrie dans l'espace, c'est une projection telle que la droite et le plan — quels que soient leurs rôles respectifs — sont perpendiculaires.
les vecteurs ont la même direction ou bien l'un des deux vecteurs est le vecteur nul 0 ; les vecteurs u et v sont colinéaires si et seulement si il existe un nombre réel k tel que u → = k v → \overrightarrow{u}=k\overrightarrow{v} u =kv .
Propriété: Si une droite est la médiatrice d'un segment alors elle est perpendiculaire à ce segment en son milieu. Propriété : Si un quadrilatère est un losange alors ses diagonales sont perpendiculaires. Propriété :Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
Adjectif. (Géométrie) De même direction (se dit de vecteurs). Deux vecteurs colinéaires et de même module sont égaux ou opposés. Le vecteur nul est colinéaire à tout vecteur.
Points clés
Alternativement, deux droites sont parallèles si leurs vecteurs directeurs sont colinéaires. Pour déterminer le point d'intersection entre deux droites, on trouve les valeurs des paramètres 𝑡 et 𝑡 qui produisent le même ensemble de coordonnées dans les équations paramétriques de chaque droite.
Dans l'espace, deux droites sont orthogonales si elles sont chacune parallèles à des droites se coupant en angle droit ; deux perpendiculaires étant deux droites orthogonales et sécantes.
Deux droites orthogonales ne sont pas nécessairement perpendiculaires, elles ne le sont que si elles sont coplanaires. Deux droites orthogonales à une même troisième ne sont pas nécessairement parallèles. Si deux droites sont parallèles, toute droite orthogonale à l'une est orthogonale à l'autre.
Nécessairement, cela signifie qu'elles sont sécantes et donc coplanaires. DEFINITION: deux droites de l'espace sont orthogonales quand en un point de l'espace, leurs parallèles sont perpendiculaires.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Il s'agit d'une opération de multiplication entre deux vecteurs donnant comme résultat un scalaire, c'est-à-dire un nombre. Il est noté en général avec un point →u⋅→v.
L'argument d'un nombre complexe 𝑧 = 𝑎 + 𝑏 𝑖 peut être obtenu en utilisant la réciproque de la fonction tangente dans chaque quadrant : Si l'image de 𝑧 se situe dans le premier ou le quatrième quadrant, a r g a r c t a n ( 𝑧 ) = 𝑏 𝑎 .
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Deux droites sont parallèles si et seulement si elles sont coplanaires et non sécantes (c'est-à-dire confondues ou n'ayant aucun point commun). Attention : Dans l'espace, 2 droites non sécantes ne sont pas forcément parallèles !
Un vecteur \overrightarrow{n} est normal à un plan si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.
Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires. Le vecteur nul →0 est colinéaire à tout vecteur. Car quel que soit un vecteur →u, on peut toujours écrire: →0=0⋅→u. 3 points A, B, C sont alignés ⇔ →AB et →AC sont colinéaires.