La trigonométrie est un sous-domaine des mathématiques, qui consiste à étudier les rapports entre les mesures des angles et les mesures des longueurs dans un triangle rectangle. L'analyse de ces rapports permet de déduire des distances qu'on ne peut mesurer, par exemple, quand le triangle rectangle est très grand.
Branche des mathématiques, issue de l'astronomie, qui, en liaison avec la géométrie euclidienne, permet de calculer les mesures des côtés d'un triangle ou de ses angles, à partir de certaines d'entre elles. (On y utilise et étudie en particulier les fonctions circulaires et leurs réciproques.)
Formules fondamentales :
tg x = sin x / cos x. cotg x = cos x / sin x.
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
La tangente
On peut résumer ainsi chacune de ces formules trigonométriques : Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse. Tangente(angle) = Opposé ÷ Adjacent.
cosh(x) = ex + e−x 2 . La fonction sinus hyperbolique est la fonction sinh : R → R définie par sinh(x) = ex − e−x 2 . La fonction tangente hyperbolique est la fonction tanh : R → R définie par tanh(x) = sinh(x) cosh(x) = ex − e−x ex + e−x .
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
L'histoire des fonctions trigonométriques semble avoir débuté il y a environ 4 000 ans. Nous savons de façon certaine que les Babyloniens déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent.
L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
L'astronome grec Hipparque est considéré par beaucoup comme le père de la trigonométrie. Au cours de sa vie, aux alentours de l'an 120 av. J. -C., il crée une table de cordes tirées du centre d'un cercle qui forment des angles dont il tire des formules trigonométriques.
La trigonométrie est une branche des mathématiques qui se penche sur les relations entre les côtés et les angles des triangles. Cette discipline trouve son utilité dans de nombreux domaines, allant de la science et de l'ingénierie à la navigation maritime et à l'astronomie.
Vous pouvez trouver des applications de trigonométrie dans notre vie quotidienne. Par exemple, la triangulation est utilisée en astronomie pour mesurer les distances avec les étoiles voisines, en géographie pour mesurer les distances entre les repères et les systèmes de navigation par satellite.
Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
La tangente d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par son côté adjacent.
Définition : Formules trigonométriques
Par exemple, si on connaît la mesure d'un angle 𝜃 et la longueur de son côté adjacent A, et que l'on souhaite calculer la longueur du côté opposé O, on utilise la formule trigonométrique t a n O A 𝜃 = pour obtenir O A t a n = 𝜃 .
Quand on cherche la mesure d'un des angles aigus d'un triangle et que l'on connaît les longueurs de son côté opposé et de son côté adjacent, on peut utiliser la formule de la tangente pour calculer la mesure de l'autre angle aigu du triangle.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h). Représentation graphique sur un intervalle de deux périodes de la fonction cosinus. Le cosinus est habituellement cité en deuxième parmi les fonctions trigonométriques.
En mathématiques, la loi des cosinus est un théorème de géométrie couramment utilisé en trigonométrie, qui relie dans un triangle la longueur d'un côté à celles des deux autres et au cosinus de l'angle formé par ces deux côtés. Cette loi s'exprime de façon analogue en géométrie plane, sphérique ou hyperbolique.