Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Enfin, la tangente est le rapport entre le sinus et le cosinus, ce qui revient à faire le rapport entre le côté opposé à l'angle et le côté adjacent à l'angle.
CASH : Cosinus = Adjacent Sur Hypoténuse ; tan = COCA = Côté Opposé / Côté Adjacent ; CAH - SOH - TOA ("Casse-toi !") : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Définition du rapport tangente
Dans un triangle rectangle, la tangente d'un angle, notée tanθ est le rapport de la mesure du côté opposé à l'angle θ et du côté adjacent à ce même angle.
On appelle côté opposé à l'angle le côté [AC]; le côté adjacent à l'angle est le côté qui forme l'angle et qui n'est pas l'hypoténuse, soit [AB]. Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Définition : (sinus, cosinus et tangente)
Le cosinus de l'angle est le rapport des longueurs du côté adjacent à cet angle et de l'hypoténuse. La tangente de l'angle est le rapport des longueurs du côtés opposé et adjacent à cet angle et de l'hypoténuse.
La loi des sinus permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Pour ce faire, il faut connaitre la mesure d'un angle, de son côté opposé et d'un autre côté ou d'un autre angle.
La valeur exacte de sin(45) est √22 .
La valeur exacte de sin(60°) sin ( 60 ° ) est √32 .
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
La valeur exacte de cos(45°) cos ( 45 ° ) est √22 .
Généralement, on utilise la loi des cosinus dans deux situations : lorsqu'on connait les mesures de deux côtés et de l'angle qu'ils forment dans le triangle ce qui permet de trouver la mesure du troisième côté (comme dans le triangle de gauche ci-dessous);
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
Utiliser la trigonométrie pour trouver les longueurs des côtés d'un triangle rectangle. On peut utiliser les lignes trigonométriques pour calculer la longueur de l'un des côtés d'un triangle rectangle.
Trigonométrie Exemples. Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car la tangente est négative dans le quatrième quadrant. La valeur exacte de tan(45) est 1 .
La valeur exacte de cos(30°) cos ( 30 ° ) est √32 .
Re : Valeur exact de sin(1)
La valeur exacte de sin(1) est sin(1), la valeur exacte de est ... , la valeur exacte de 1 est 1, etc. En maths, sauf précision contraire, on ne manipule que des valeurs exactes.
D'où cos 120 = 1/2 !
Angle de 60°: sextant.
Calcul du sinus
On veut obtenir une valeur approchée du sinus d'un angle de 50°. On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près).
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.