Il s'agit d'une réaction physique durant laquelle deux noyaux atomiques légers et instables fusionnent au sein d'un plasma (l'état de la matière qui n'est ni solide, ni liquide, ni gazeux) sous l'effet d'une température de quelques 150 millions de degrés pour créer un noyau plus lourd.
La fusion nucléaire est une réaction physique qui se déroule au cœur des étoiles : des noyaux atomiques fusionnent, dégageant l'énergie à l'origine de la lumière et de la chaleur qu'émettent les étoiles.
Aucun risque de fusion du cœur : Un accident nucléaire de type Fukushima ne peut pas se produire dans un réacteur de fusion. Les conditions propices aux réactions de fusion sont difficiles à atteindre ; en cas de perturbation, le plasma se refroidit en l'espace de quelques secondes et les réactions cessent.
On soulignera que la fusion nucléaire ne rejette pas de dioxyde de carbone ni d'autres gaz à effet de serre dans l'atmosphère et qu'avec la fission nucléaire, elle pourrait jouer un rôle dans l'atténuation du changement climatique, en tant que source d'énergie bas carbone.
De très grandes quantités d'énergie sont libérées par le processus de fusion nucléaire. Pouvoir reproduire ce phénomène sur Terre permettrait en théorie de satisfaire définitivement les besoins énergétiques de l'humanité. C'est précisément l'enjeu majeur de la recherche sur la fusion nucléaire « contrôlée ».
Cette réaction nécessite une température très élevée, comme celle que l'on trouve au cœur des étoiles. On peut y parvenir en bombardant les isotopes d'hydrogène par un faisceau laser très intense. L'inconvénient de cette méthode est qu'elle est très liée aux applications militaires.
En 1934, Ernest Rutherford réalise la première réaction de fusion en laboratoire (entre atomes de deutérium).
Des dizaines de milliers de tonnes à évacuer
De plus ce cœur, toujours en fusion à basse température, est recouvert par les structures écrasées de l'ancien bâtiment du réacteur.
La fusion nucléaire n'utilise pas de matières fissiles comme l'uranium et le plutonium (le tritium radioactif n'est pas un matériau fissile ni fissionnable). De plus, un réacteur de fusion ne contient pas d'éléments susceptibles d'être utilisés pour fabriquer des armes nucléaires. Pas de fusion du cœur possible.
Le combustible nucléaire pour la fusion est composé de deux isotopes de l'hydrogène le deutérium et le tritium. Le deutérium se trouve en abondance dans l'eau. Le tritium n'existe sur Terre qu'a l'état de trace.
ITER est le plus grand projet scientifique mondial des années 2010. Il contiendra le plus grand réacteur à fusion nucléaire du monde lors de son achèvement en 2025.
Un technicien de General Fusion travaille sur le système d'injection de plasma de l'un des réacteurs de la société.
La chaleur produite par ces réactions de fission va servir à produire de la vapeur, laquelle va faire tourner une turbine électrique. Ce point est commun à toutes les centrales. Pour arrêter le réacteur, c'est-à-dire pour stopper la réaction en chaîne, il faut agir sur la production des neutrons, ou les capturer.
Deuxième « segment » de la chambre à vide finalisé La deuxième « section » de 40 degrés de la chambre à vide ITER sera finalisé au mois d'avril 2022. Construit autour du secteur n°1(7) fourni par la Corée, ce « sous-assemblage » a été finalisé plus vite que le premier grâce aux enseignements tirés.
Le phénomène de fusion nucléaire peut-être observé au sein des étoiles dans lesquelles une énergie colossale est libérée. Elle se distingue de la fission nucléaire car dans cette dernière, un atome lourd se scinde en deux atomes plus légers avec certes, un dégagement d'énergie, mais nettement inférieur.
Le coût du programme ITER est réparti entre les sept partenaires de l'Organisation internationale ITER : l'Union européenne (+ la Suisse, au titre de sa participation à Euratom), la Chine, l'Inde, le Japon, la Corée du Sud, la Russie et les États-Unis, soit 34 nations.
200 millions de degrés : la température nécessaire pour réaliser la fusion nucléaire. D'autre part, pour augmenter la probabilité de fusion, on a recours à des isotopes. (atomes ayant le même nombre de protons. Ils constituent avec les neutrons le noyau de l'atome.
La conclusion est simple : si nous voulons libérer de l'énergie nucléaire, il nous faut : Soit assembler des petits noyaux pour en faire de plus gros ; c'est la fusion. Soit casser des gros noyaux pour en faire de moins gros : c'est la fission.
C'est pourquoi les recherches en fusion se concentrent majoritairement sur la réaction entre deux isotopes de l'hydrogène : le deutérium et le tritium, étant la plus « facile » à réaliser bien qu'elle nécessite tout de même d'atteindre une température d'environ 150 millions de degrés.
Une problématique centrale, dix ans après la catastrophe nucléaire, que le pays devra régler au plus tôt avant l'automne 2022, date à laquelle l'espace de stockage de Fukushima-Daiichi se retrouvera entièrement saturé d'eau contaminée.
Trente ans après l'explosion de Tchernobyl, les bulldozers continuent à enterrer les maisons abandonnées en Biélorussie. Mitoyen de l'Ukraine, le pays a subi les plus graves retombées radioactives : 23 % de son territoire ont été contaminés. Les séquelles restent profondes et les populations, meurtries.
Des neutrons viennent percuter le noyau d'atomes en libérant une grande quantité d'énergie et de nouveaux neutrons. Un réacteur est conçu pour entretenir cette réaction de manière stable et prévenir automatiquement tout emballement du processus. Une centrale nucléaire peut-elle exploser ? La réponse est non.
L'énergie de fusion représente l'énergie produite à partir de réactions de fusion nucléaire durant lesquelles deux atomes légers fusionnent pour produire un noyau plus lourd et dégager une certaine quantité d'énergie, principalement sous forme de chaleur.
En bombardant la paroi du tokamak, les neutrons nés de cette fusion produisent de la chaleur qui sera évacuée par un circuit d'eau pour aller ensuite alimenter, sous forme de vapeur, une turbine et un alternateur, et produire en bout de chaîne de l'électricité.
La réaction de fusion la plus efficace en laboratoire est la réaction entre deux isotopes de l'hydrogène (H), le deutérium (D) et le tritium (T). La fusion du deutérium et du tritium (D-T) produira un noyau d'hélium et un neutron. Les atomes sont animés d'un mouvement incessant.