(Mathématiques) (Par métonymie) Position du point qui correspond à cette distance. (Géométrie) L'une des coordonnées rectilignes, en général horizontale, grâce auxquelles on définit la position d'un point et sa distance à l'origine.
1. Coordonnée x caractérisant un point M d'un axe muni d'un repère et telle que . 2. Première coordonnée d'un point M d'un espace affine muni d'un repère cartésien.
Abscisse. Sur une droite graduée, l'abscisse d'un point est le nombre qui permet de repérer la position de ce point sur la droite. Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe horizontal.
Une droite graduée est une droite qui contient un point nommé Origine, un autre appelé Unité et un sens. Définition 2 : Sur une droite graduée, chaque point est repéré par un nombre relatif. On dit que ce nombre est l'abscisse de ce point.
L'axe horizontal (abscisses) axe, également appelé axe des x, d'un graphique affiche des étiquettes de texte au lieu d'intervalles numériques, et offre moins d'options d'échelle que celles disponibles pour l'axe vertical (ordonnées), également appelé axe des y.
(Mathématiques) (Par métonymie) Position du point qui correspond à cette distance. (Géométrie) L'une des coordonnées rectilignes, en général horizontale, grâce auxquelles on définit la position d'un point et sa distance à l'origine.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Définition de l'abscisse d'un point
Sur un axe gradué, on repère chaque point grâce à un nombre appelé son abscisse. Exemple : Sur l'axe gradué précédent, L'abscisse de A est 1, l'abscisse de H est 4, l'abscisse de T est 1,5 et l'abscisse de S est 6,25.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Un repère de l'espace est constitué de 3 axes : celui des abscisses, celui des ordonnées et celui des cotes. Les coordonnées d'un point de l'espace sont constituées de 3 nombres : l'abscisse, l'ordonnée et la cote de ce point, lisibles sur les axes du même nom.
Définition 1 : Un repère orthogonal du plan est composé de deux droites graduées perpendiculaires et de même origine. L'une horizontale est appelée axe des abscisses et l'autre verticale est appelée axe des ordonnées.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
Abscisse à l'origine
La valeur de x pour un point (x, y) sur l'axe des abscisses (axe des x) lorsque y est égal à zéro. Voir aussi Ordonnée à l'origine.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Repère orthogonal et orthonormal
Si les axes (OI) et (OJ) sont perpendiculaires, alors est un repère orthogonal. Si les axes (OI) et (OJ) sont perpendiculaires, et qu'en plus OI = OJ alors est un repère orthonormal (ou orthonormé).
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.
Un graphique en XY ou nuage de points est constitué de deux axes gradués et légendés. L'axe des abscisses est à l'horizontale. L'axe des ordonnées est à la verticale. La légende de chaque axe doit comporter le nom ou le symbole de la grandeur et entre parenthèse le symbole de son unité.
(Géométrie) Position d'un point d'un plan par rapport au deuxième axe, en général représenté verticalement (axe des y), la position par rapport au premier axe étant l'abscisse.
La plus petite abscisse possible pour un point de Cf est –5 tandis que la plus grande abscisse possible est 6 : f est donc définie sur l'intervalle [–5 ; 6]. b.
Points alignés
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
¤ Une demi-droite se note entre un crochet et une parenthèse. Exemple : [AB) désigne la demi-droite d'origine A passant par B. ¤ Une distance se note sans rien. Exemple : AB désigne la distance entre les points A et B, c'est-à-dire la longueur du segment [AB].
L'origine O de la demi-droite a pour abscisse 0.
Pour écrire un nombre décimal, on écrit d'abord la partie entière, puis la virgule et ensuite les chiffres situés après la virgule de la partie décimale. Pour repérer un nombre décimal sur une droite graduée, il faut additionner sa partie entière à sa partie décimale.