Images et antécédents Si une fonction f est affine et n'est pas constante, alors tout nombre admet un antécédent et un seul par la fonction f. On dit que le nombre réel x est l'antécédent du nombre réel f ( x ) f(x) f(x)
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
Calculer l'antécédent de 22 par la fonction f. Réponse : pour déterminer l'antécédent d'un nombre par une fonction affine, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 22 autrement dit 7x - 6 = 22, soit 7x = 28 et donc x=287 = 4, donc l'antécédent de 22 par f est 4.
L'antécédent de " 1 ": Pour déterminer l'antécédent de " 1 ", il suffit de résoudre l'équation: f ( x) = 1. Calcul du discriminant = b2 - 4 ac: = 22 - 4 x 1 x 1 = 0.
Le seul antécédent de 4 par f est -2.
Quels sont les antécédents de 3 par la fonction f ? L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0.
Il s'agit de trouver le nombre x tel que h(x) = –10. Or, h(x) = 5x donc 5x = –10 ; soit x = = –2. L'antécédent de –10 par h est –2.
1. Fait antérieur sur lequel on appuie un raisonnement, une conclusion : Invoquer un antécédent. 2. Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
Lorsqu'on recherche l'équation d'une droite à partir du taux de variation et d'un point, on peut suivre les étapes suivantes : Dans l'équation y=ax+b y = a x + b , remplacer le paramètre a par le taux de variation donné. Dans cette même équation, remplacer x et y par les cordonnées (x,y) du point donné.
Une fonction affine est une fonction ayant pour structure ax + b dont l'inconnue X est un nombre réel et les données a et b, des nombres relatifs donnés. Le but étant alors de calculer l'inconnue X. La fonction affine peut être représentée par un graphique et notamment une ligne droite.
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.
2 a donc deux antécédents qui sont 1 et 4.
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
Le seul antécédent de 8 par la fonction f est donc x = 4.
Pour déterminer l'image de 2 par f, on commence par repérer 2 sur l'axe des abscisses, puis on lit l'ordonnée de l'unique point de la courbe d'abscisse 2. On peut lire que l'image de 2 par la fonction f est 3. Pour déterminer le ou les antécédents d'un nombre b par f , il suffit de résoudre l'équation ( )= f x b .
L'antécédent est le nom ou le pronom auquel se rapporte un pronom relatif ou un pronom anaphorique. Exemples : - C'est le livre dont je t'avais parlé. -> Livre est l'antécédent du pronom relatif dont.
Un antécédent d'un nombre y par une fonction f est un nombre x dont l'image f par est égale à y. C'est-à-dire tel que y = f(x).
Le pronom personnel à la 3e personne est généralement un pronom de reprise, c'est-à-dire qu'il reprend une information mentionnée dans le texte. On appelle cette information antécédent.
4 est l'antécédent de -12 par g.
Le nombre 0 admet donc deux antécédents par ℎ qui sont 1 et −1.
Déterminer des images et des antécédents dans le cas de fonctions affines Exercice. On donne la fonction affine f d'expression f(x)=-9x+7. Quelle est l'image de 4 par la fonction f ? L'image de 4 par la fonction f est −29.