Un diviseur est un nombre par lequel on peut diviser un autre nombre et obtenir comme résultat un nombre entier.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Les multiples et diviseurs
Le multiple d'un nombre est le produit de ce nombre avec un nombre entier. Par exemple : 6×8=48 donc 48 est un multiple de 6 et de 8. Si 48 est un multiple de 6 et de 8 alors 6 et 8 sont des diviseurs de 48.
Diviseur. Soit deux nombres a et b. Si l'on divise a par b, a est appelé le dividende et b, le diviseur. Par exemple, dans la division 56,7 ÷ 5,4 = 10,5, le diviseur est 5,4.
Retenir Un entier b est un diviseur d'un autre entier a lorsque le reste de la division euclidienne de a par b vaut zéro. On dit aussi que a est un multiple de b ou que a est divisible par b. Remarque : Quand un nombre vaut zéro, on dit qu'il est nul.
1. Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs.
Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l'égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Un diviseur est un nombre par lequel on peut diviser un autre nombre et obtenir comme résultat un nombre entier.
0 est un diviseur de zéro. Les diviseurs de zéro sont les éléments non réguliers.
4/ Nombres premiers : définition
Diviseurs qui sont 1 et lui-même. ( puisque 1 divise tout nombre et tout nombre est diviseur de lui-même. )
1. Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 .
Les diviseurs de 27 sont : 1, 3, 9, 27.
On dit que b est un diviseur de a s'il existe un nombre entier naturel q tel que a = b × q. On dit aussi que a est un multiple de b, ou que a est divisible par b. Exemple : 72 est divisible par 8 (et par 9) car 72 = 8 × 9.
Effectuer la division euclidienne d'un nombre entier a par un nombre entier b, c'est trouver le quotient entier et le reste de la division de a par b. Le nombre a est appelé le dividende et le nombre b est appelé le diviseur.
Exemples et contre-exemple : a) 15 est un multiple de 3, car 15 = k × 3 avec k = 5. b) 10 est un diviseur de 40, car 40 = k × 10 avec k = 4. c) Par contre, 13 n'est pas un multiple de 3 car il n'existe pas d'entier k tel que 13 = k × 3. Propriété : La somme de deux multiples d'un entier a est un multiple de a.
Remarque : • Le nombre 1 divise tout entier naturel. Tout entier naturel est diviseur de lui-même. Le nombre 0 ne divise aucun entier naturel différent de 0. Le nombre 0 est multiple de tous les entiers naturels.
Dans le cas du nombre 1, les deux diviseurs 1 et lui-même ne sont pas distincts : ce sont les mêmes. 1 ne répond donc pas à la définition d'un nombre premier, et n'est donc pas premier !
La division par zéro donne l'infini. Cette convention a d'ailleurs été défendue par Louis Couturat dans son livre De l'infini mathématique. Cette convention est assez cohérente avec les règles de la droite réelle achevée, dans laquelle n'importe quel nombre, divisé par l'infini, donne 0.
Pour qu'un nombre soit divisible par 4, il faut qu'il soit divisible par 2 et encore par 2. e. Un nombre divisible par 6 est divisible par 3 et par 2.
Le nombre qui est divisé s'appelle le dividende ; Le nombre qui divise s'appelle le diviseur ; Le résultat de l'opération s'appelle le quotient.
En effet, il est impossible de diviser un nombre par 0. Cependant, si on avait plutôt 0÷6 par exemple, alors le résultat serait 0. En bref, 0 peut être divisé par n'importe quel nombre, le résultat sera toujours 0, mais on ne peut diviser aucun nombre par 0, c'est simplement impossible!
Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Définition. Un entier naturel est un nombre premier s'il admet exactement deux diviseurs positifs : 1 et lui‑même.