En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point.
Soit une doite (D) du plan. On appelle vecteur normal de la droite (D) tout vecteur (non nul) orthogonal à un vecteur directeur de la droite. Si l'équation cartésienne de (D) est ax+by+c=0, alors un vecteur normal de (D) est le vecteur de coordonnées (a,b).
Un vecteur normal à une droite d quelconque du plan est un vecteur non nul et orthogonal à un vecteur directeur de d.
Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
Un vecteur est défini par sa direction, son sens et sa longueur. La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Étant donnée une droite (D), on appelle vecteur normal à (D) tout vecteur non nul orthogonal à un vecteur directeur de (D). La direction d'un vecteur normal à une droite donne la direction de l'une de ses perpendiculaires. est un vecteur directeur de (D).
Vecteur : objet mathématique représenté par un segment fléché dont les caractéristiques sont : le point d'application, la direction, le sens et la norme (dite aussi valeur ou intensité).
vecteurs de même direction.
Une droite est constituée d'une infinité de points alignés. En théorie, une droite n'a ni début ni fin, elle est donc impossible à dessiner dans sa totalité. On se contente donc d'en dessiner une partie.
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Un vecteur, généralement noté →u , est un objet mathématique qui possède à la fois une grandeur, une direction et un sens. La direction et le sens constituent l'orientation du vecteur.
On distingue trois types de vecteurs: vecteurs libres, glissants et liés.
En physique, les vecteurs sont grandement utilisés, ils permettent de modéliser des grandeurs comme une force, une vitesse, une accélération, une quantité de mouvement ou certains champs (électrique, magnétique, gravitationnel…).
Définition : Deux vecteurs et non nuls sont dits colinéaires si et seulement si il existe un nombre réel λ tel que u → = λ v → c'est à dire si est un "multiple" de . Par convention, on dira que le vecteur est colinéaire à tout vecteur.
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur. Donc, si le vecteur →u est colinéaire au vecteur →v , alors il existe un scalaire k tel que →u=k→v u → = k v → .
Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.
Toute droite du plan non parallèle à l'axe des ordonnées a une unique équation réduite de la forme y = px + d, et est la représentation graphique de la fonction affine f définie par f(x) = px + d. p est le coefficient directeur de la droite ; d est l'ordonnée à l'origine de la droite.
Toute droite du plan admet une équation de la forme ax + by + c = 0 appelée équation cartésienne. Le vecteur est un vecteur directeur de cette droite.