La loi binomiale fait partie des plus anciennes lois de probabilités étudiées. Elle a été introduite par Jacques Bernoulli qui y fait référence en 1713 dans son ouvrage Ars Conjectandi.
Bernoulli invente (découvre) la loi binomiale, souvent notée B(n,p) : il y a Cnk façons (nombre de combinaisons de k objets parmi n.) d'obtenir k succès au cours des n expériences et chacune d'elles a la même probabilité de réalisation, à savoir pkqn-k car les Xi sont des variables indépendantes : P(Xi/Xj) = P(Xi).
Comme l'explique Victor Rabiet, on estime « à tort, mais d'une certaine façon, compréhensible », la naissance des probabilités à 1654, lorsque Blaise Pascal élabore dans sa correspondance avec Pierre de Fermat, la base du calcul des probabilités à partir de situations de jeux d'argent.
En probabilité, la loi binomiale permet de décrire le nombre de succès dans une série d'expériences identiques et indépendantes, où il existe deux résultats possibles : succès ou échec. Elle est définie par deux paramètres : le nombre total d'expériences (n) et la probabilité de succès dans chaque expérience (p).
La loi de probabilité donnant le nombre de succès sur ces n répétitions est la loi binomiale de paramètres n et p (notée B(n;p)). Il s'agit en fait d'une généralisation de la loi de Bernoulli dans le cas où l'on répète plusieurs fois l'expérience.
Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès.
La loi hypergéométrique (loi d'une variable aléatoire lors d'un tirage sans remise) peut être approchée par la loi binomiale lorsque le nombre d'individus de la population est très grand devant le nombre d'individus étudiés. On peut alors également approcher la loi binomiale par une des deux lois précédentes.
Remarque. Pour une loi binomiale de n épreuves, on peut formaliser l'univers par {0 ;1}n. Soient k un entier naturel inférieur ou égal à n et X une variable aléatoire qui suit la loi binomiale de paramètres n et p. Alors P(X=k)=(nk)pk(1−p)n−k.
De manière générale, la loi de Bernoulli est la loi de la variable aléatoire qui code le résultat d'une épreuve qui n'admet que deux issues (épreuve de Bernoulli) : 1 pour « succès », 0 pour « échec », ou quel que soit le nom qu'on donne aux deux issues d'une telle expérience aléatoire.
Si la fréquence observée est dans l'intervalle de fluctuation, on accepte l'hypothèse selon laquelle le caractère A apparait avec une fréquence p dans le groupe. Si n'appartient pas à l'intervalle, on rejette l'hypothèse. Il faut noter que l'une ou l'autre de ces 2 conclusions possibles se font au risque ou seuil 5%.
La notion de probabilité, dans sa forme la plus simple, remonte à l'origine des jeux de hasard. On joue aux dés depuis des milliers d'années. Les cartes à jouer étaient déjà anciennes en Asie et au Moyen Orient lorsqu'elles apparurent en Europe au 14e siècle.
Le calcul des probabilités est né de l'étude des jeux de hasard. Ce dernier mot, transmis par l'Espagne, vient d'Arabie. L'arabe az-zahr, « dé à jouer », s'est transformé en azar, « hasard » (et souvent « revers ») en espagnol.
Ils permettent de traduire de manière abstraite les comportements ou des quantités mesurées qui peuvent être supposés aléatoires. En fonction du nombre de valeurs possibles pour le phénomène aléatoire étudié, la théorie des probabilités est dite discrète ou continue.
Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
La loi de Poisson a été introduite en 1838 par Denis Poisson (1781–1840), dans son ouvrage Recherches sur la probabilité des jugements en matière criminelle et en matière civile.
L'histoire de la courbe de Gauss remonte à Abraham de Moivre (1667-1754), qui a donné la première version du théorème central limite pour le jeu de pile ou face, en fait une asymptotique des probabilités binomiales.
Une variable aléatoire X suit une loi binomiale lorsqu'elle compte le nombre de succès dans un schéma de Bernoulli (répétition un nombre fini de fois de façon indépendante d'une même épreuve de Bernoulli).
Discrète mais bien connue, la loi de Poisson est une loi de probabilité qui s'applique aux évènements rares. Parmi ses domaines de prédilection, les contrôles de qualité (y compris révision comptable, puisqu'on suppose que les erreurs sont rares), les probabilités de défaut de crédit, les accidents...
Soit Y la variable aléatoire qui désigne le nombre de passagers qui se présenteront pour leur vol. Comme il est connu qu'en moyenne seulement 95% des passagers se présenteront pour leur vol, la loi binomiale nous donne: P [ Y = 101 ] = ( 103 101 ) × ( 0 , 95 ) 101 × ( 0 , 05 ) 2 ≡ 0 , 073 86.
La variance de la loi binomiale est donnée par l'expression n p ( 1 − p ) . Ici, (n\) est le nombre d'expériences et est la probabilité de réussite. Si la variance d'une variable aléatoire est petite, alors les valeurs de la variable sont souvent proches de l'espérance.
On réalise une épreuve de Bernoulli dont le succès S a pour probabilité p. Une variable aléatoire X est une variable aléatoire de Bernoulli lorsqu'elle est à valeurs dans {0;1} où la valeur 1 est attribuée au succès. On dit alors que X suit la loi de Bernoulli de paramètre p. Autrement dit, on a P(X=1)=p et P(X=0)=1−p.
lorsque X suit une loi de probabilité "connue" (comme la loi binomiale par exemple), on dispose de formules. Par exemple, si X suit la loi binomiale de paramètres n et p alors l'espérance de X est E(X)=n×p.
Si le signe de Z est positif cela signifie que l'on se situe à 2.5 σ à droite de la moyenne. Si on lit la valeur sur la table correspondant à 2.5 sur la deuxième page, on trouvera une probabilité de 0.9938. La valeur de 0.9938 correspond à la probabilité associée à toutes les valeurs inférieures à 25.
Approximation d'une loi binomiale par une loi de Poisson
Lorsque n prend de grandes valeurs, et que p est petit, la loi binomiale B(n , p) est approchée par la loi de Poisson P(np) (conservation de la moyenne). Les conditions d'approximation sont n ≥ 30, p ≤ 0,1 et n p < 15.
En partant de la valeur de alpha/2 en tant que proportion, on la multiplie par 2 afin de trouver la valeur de alpha. Ensuite, on consulte la table de la loi normale réduite qui en fonction de cette dernière valeur va nous donner celle du score Z (Z alpha).