L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
Mais on attribue à Hipparque de Nicée (-190 ; -120) les premières tables trigonométriques. Elles font correspondre l'angle au centre et la longueur de la corde interceptée dans le cercle.
L'histoire des fonctions trigonométriques semble avoir débuté il y a environ 4 000 ans. Nous savons de façon certaine que les Babyloniens déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent.
La trigonométrie est un sous-domaine des mathématiques, qui consiste à étudier les rapports entre les mesures des angles et les mesures des longueurs dans un triangle rectangle. L'analyse de ces rapports permet de déduire des distances qu'on ne peut mesurer, par exemple, quand le triangle rectangle est très grand.
Vers 1810, Joseph Fourier est le premier à énoncer que toute fonction peut se décomposer comme une somme infinie de ces fonctions trigonométriques cosinus et sinus.
Fermat partage avec Descartes l'invention de la Géométrie Analytique et est un des précurseurs du calcul Différentiel et Intégral. Dés 1629 il est en possession d'une règle pour la détermination des extremums des fonction algébriques. En 1632 il elabore sa méthode des Tangentes.
Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du XI e siècle et, pour la forme plane, par Nasir al-Din al-Tusi au début du XIII e siècle.
Il y aussi des formules trigonométriques utiles où les nombres complexes apparaissent, la formule d'Euler, e i θ = cos θ + i sin , et la formule de Moivre, θ + i sin θ ) n = cos n θ + i sin .
Formules fondamentales :
tg x = sin x / cos x. cotg x = cos x / sin x. 1 + tg² x = 1 / cos² x.
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
L'astronome grec Hipparque est considéré par beaucoup comme le père de la trigonométrie. Au cours de sa vie, aux alentours de l'an 120 av. J. -C., il crée une table de cordes tirées du centre d'un cercle qui forment des angles dont il tire des formules trigonométriques.
Une phrase permet de se rappeler des trois premiers théorèmes à la fois : cah soh toa pour « casse-toi » : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent. Certaines personnes préfèrent soh cah toa.
Le mot sinus est un mot latin signifiant courbe, pli, cavité. Il a donné en français les mots sein et sinueux.
En 1489, les signes + et – apparaissent pour la première fois dans un ouvrage de l'Allemand Johannes Widmann, de Leipzig, mais ils signifient alors un surplus ou un manque. Ce n'est qu'en 1514 que Gielis van der Hoecke utilise ces symboles pour représenter l'addition ou la soustraction.
Utiliser la trigonométrie pour trouver les longueurs des côtés d'un triangle rectangle. On peut utiliser les lignes trigonométriques pour calculer la longueur de l'un des côtés d'un triangle rectangle.
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
Définitions : - Le cosinus du nombre réel x est l'abscisse de M et on note cos x. - Le sinus du nombre réel x est l'ordonnée de M et on note sin x. Démonstration : Aux points de la droite orientée d'abscisses x et x + 2kπ ont fait correspondre le même point du cercle trigonométrique.
Comme vous le savez, il y a 3 formules à connaître : sin (angle) = (côté opposé à l'angle) divisé par (hypoténuse). cos (angle) = (côté adjacent à l'angle) divisé par (hypoténuse). tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle).
La tangente est une fonction trigonométrique fondamentale. Elle est notée tan et était auparavant notée tg.
sin(2x)=2cos(x)sin(x).
La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
Le sinus de l'un est égal au cosinus de l'autre et réciproquement. On va démontrer que le sinus d'un angle est égal au cosinus de son complémentaire.
En théorie des probabilités, une loi triangulaire est une loi de probabilité dont la fonction de densité est affine de sa borne inférieure à son mode, et de son mode à sa borne supérieure. Elle est mentionnée sous deux versions : une loi discrète et une loi continue.