Définition. Factoriser une expression littérale c'est l'écrire sous la forme d'un produit : on parle de factorisation.
Définition. Factoriser, c'est transformer une expression en la faisant passer d'une somme à un produit.
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
a² + 2ab + b² = (a + b)² a² - 2ab + b² = (a - b)² a² - b² = (a + b)(a - b)
Pour passer de la forme factorisée à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de degré 2 sous la forme factorisée: f(x)=4(x−2)(x+7) f ( x ) = 4 ( x − 2 ) ( x + 7 ) .
La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.
Petite astuce vous pouvez trouver le facteur commun entre 32 et 16 en divisant le plus gros membre par le plus petit -> 32/16 = 2 donc on peut prendre 16 pour facteur commun. Pour "x" il y aura un seul 16 (1x16=16) , et pour "y" il y en aura deux ( 2x16=32).
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Un facteur est un terme qui intervient dans une multiplication. Exprime 56 sous la forme d'un produit de facteurs. Voici deux possibilités :56=2×28 ou 56=4×2×7 56 = 2 × 28 ou 56 = 4 × 2 × 7 Pour la première factorisation de 56 , les facteurs sont 2 et 28 .
Pour rappel : Développer c'est transformer un produit en somme. Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérale des calculs possibles.
Une expression littérale contient des lettres. L, l, a, b sont des lettres qui représentent des nombres, elles figurent dans les expressions 2 × (l + L), 2a + 3, 2 × a × b. Ce sont des expressions littérales.
Réduire une expression littérale revient à l'écrire le plus simplement avec le moins de termes possible. On regroupe les termes de l'expression du même type ensemble lorsque l'expression est composée d'additions et/ou de soustractions de termes.
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Pour factoriser avec une identité remarquable, on utilise une des trois formules vues précédemment dans le sens inverse par rapport au développement : a 2 + 2 a b + b 2 = ( a + b ) 2 a^2 +2ab + b^2=(a+b)^2 a2+2ab+b2=(a+b)2.
Développer, c'est transformer une multiplication en une somme ou en une différence. La multiplication est distributive sur l'addition. Cela signifie que, pour tous nombres k, a et b, on a : k(a + b) = ka + kb. De même, la multiplication est distributive sur la soustraction : k(a − b) = ka − kb.
72 a des facteurs de 2 et 36 . 36 a des facteurs de 2 et 18 . 18 a des facteurs de 2 et 9 . 9 a des facteurs de 3 et 3 .
On décompose 120 en produit de facteurs premiers : 120 est divisible par 2 donc 120= 2\times 60. 60 est divisible par 2 donc 60= 2\times 30.
Développer, c'est transformer un produit en somme algébrique. Réduire une somme algébrique, c'est l'écrire avec le moins de termes possibles. Factoriser, c'est transformer une somme algébrique en produit.
Une expression numérique ou algébrique est dite développée si elle représente une expression dans laquelle on a résolu tous les calculs entre parenthèses. EXEMPLE 2. 1°) Les expressions suivantes sont développées : A ( x ) = 2 x ; B ( x ) = 3 x + 5 ; C ( x ) = 2 x 2 + 3 x − 5 .
Propriété Soit f ( x ) = a x 2 + b x + c où a ≠ 0 un polynôme du second degré et Δ = b 2 − 4 a c son discriminant. Si : se factorise sous la forme f ( x ) = a ( x − x 1 ) ( x − x 2 ) où et sont les deux racines du polynôme.