En statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données.
Une hypothèse statistique est un énoncé (une affirmation) concernant les caractéristiques (valeurs des paramètres, forme de la distribution des observations) d'une population.
C'est une idée que l'on va chercher à prouver par la suite. → L'hypothèse doit répondre au problème et être affirmative. Exemple : HYPOTHESE : Les feuilles mortes tombés en automne ont disparu l'été suivant PEUT-ETRE car les êtres vivants de la forêt les ont mangées.
Il existe différents types d'hypothèses. Nous distinguons quatre types : l'hypothèse descriptive, l'hypothèse explicative en termes de facteurs, l'hypothèse explicative en termes de typologie, l'hypothèse explicative en termes de processus.
L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage. Cette hypothèse est formulée dans le but d'être rejetée.
Si H0 est vraie, alors la kinésithérapie est inefficace, le taux de guérison sera identique dans les 2 groupes. Si H1 est vraie, alors la kinésithérapie est efficace ou délétère, le taux de guérison sera différent entre les 2 groupes.
Comment formuler une hypothèse ? Pour formuler une hypothèse, il faut d'abord définir une question de recherche. Une hypothèse formulée avec précision sur la population peut ensuite être dérivée de la question de recherche, par exemple : les hommes gagnent plus que les femmes pour un même emploi en Autriche.
Selon l'hypothèse nulle, il n'y a souvent pas de différence ou de lien perceptible entre les variables étudiées. Elle indique l'absence de relation entre les éléments pertinents ou d'effet entre eux. Les chercheurs créent l'hypothèse nulle qui servira de point de référence pour la comparaison de leurs résultats.
Votre hypothèse doit être aussi précise que possible. Utilisez des chiffres, des mesures, des unités, et des termes spécifiques pour décrire votre prédiction. Voici un exemple : “Si la température augmente, alors la glace fondra plus rapidement, car la chaleur accélère le processus de fusion.”
L'important est de bien structurer l'hypothèse généralement articulée autour d'un argument principal. Il s'agit tout simplement de trouver et poser les bonnes questions au préalable. Une hypothèse est une explication proposée pour un ensemble de faits ou de phénomènes observés.
1. Proposition visant à fournir une explication vraisemblable d'un ensemble de faits, et qui doit être soumise au contrôle de l'expérience ou vérifiée dans ses conséquences.
L'hypothèse scientifique est une partie du raisonnement qui permet de présenter la recherche développée tout au long de l'article. Elle propose une ou plusieurs pistes de réponses à la question de recherche.
Synonyme : postulat, prémisse, principe, théorie.
Un test statistique (ou test d'hypothèse) consiste à détecter une différence significative : Entre une population étudiée et une valeur cible (Test de comparaison à une valeur théorique ou test de -conformité). Entre deux populations (Test de comparaison de population ou test d'homogénéité)
L'hypothèse est la description des conditions nécessaires pour que se réalise, comme prévue, la relation de cause à effet entre les niveaux de résultats.
Construire une problématique, c'est en fait interroger le sujet. Mais il faut poser des questions pertinentes, qui font débat. La problématique guide la réflexion sur le sujet, ouvre des axes de recherche qui permettent de préciser les différents arguments qui alimenteront votre démonstration.
Une hypothèse destinée à être travaillée ou vérifiée est désignée par l'expression « hypothèse de travail » (ou "hypothèse d'école") ; au contraire, une hypothèse utilisée sans intention de la vérifier (pour des raisons sentimentales, religieuses ou politiques par exemple) constitue un postulat.
Dans la première partie, nous avons discuté de l'importance des tests statistiques. Pourquoi faire des tests statistiques ? Parce qu'ils vous indiquent si la disparité des résultats d'une expérience est purement due au hasard, ou si elle révèle une différence significative entre les individus étudiés.
La règle de décision est la suivante: si la valeur calculée du critère statistique est inférieure à la valeur critique de la distribution de F, au seuil de signification voulu, on accepte l'hypothèse nulle, à savoir que les deux échantillons sont prélevés dans des populations de même variance.
Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)
Lorsque l'on cherche à déterminer si deux variables numériques sont liées, on parle de corrélation. Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.
Comment interpréter les sorties d'un test statistique : le niveau de significativité alpha et la p-value. Lors de la mise en place d'une étude, il faut spécifier un seuil de risque au-dessus duquel H0 ne doit pas être rejetée. Ce seuil est appelé niveau de significativité alpha et doit être compris entre 0 et 1.
Prendre en compte les données du sujet et vos connaissances. 2. Rédiger une phrase à la forme affirmative 3. Formuler l'aspect provisoire de cette phrase en utilisant un verbe conjugué au présent ou au conditionnel « je suppose que / il se pourrait que … » ou en utilisant l'adverbe « peut-être ».
L'hypothèse est en effet une réponse provisoire à la question préalablement posée. Elle tend à émettre une relation entre des faits significatifs et permet de les interpréter. Pour que la recherche soit valable, les hypothèses doivent cependant être vérifiables, plausibles et précises.