ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Graphiquement, elle exprime la variation verticale de la droite pour un déplacement horizontal d'une unité positive. L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
L'axe vertical d'un plan cartésien se nomme l'axe des ordonnées, ou l'axe des y . Cet axe gradué est orienté du bas vers le haut du plan cartésien. On y indique la valeur de la variable dépendante dans une relation entre deux variables.
La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
1. Avoir certaines qualités d'ordre et de méthode pour mettre chaque chose à sa place : Un esprit ordonné. 2. Comporter ses éléments disposés dans un ordre satisfaisant : Une maison bien ordonnée.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Pour la déterminer, tu dois trouver le taux de variation puis substituer le x et le y par un point quelconque dans ta fonction. Après, isole ta variable b, et tu auras la valeur de b!
Définition : Le nombre associé à un point sur une demi-droite graduée est l'abscisse de ce point. L'origine O de la demi-droite a pour abscisse 0. A est le point d'abscisse 1. Le point B a pour abscisse 2,5.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Une équation est une égalité entre deux expressions mathématiques, donc une formule de la forme A = B, où les deux membres A et B de l'équation sont des expressions où figurent une ou plusieurs variables, représentées par des lettres.
Pour trouver l'ordonnée du sommet (k), on remplace x par la valeur de h dans l'équation de la fonction. Calculer l'ordonnée à l'origine. Trouver le point situé à la même hauteur que l'ordonnée à l'origine.
Propriété : L'équation a x + b y + c = 0 avec a ≠ 0 ou b ≠ 0 est l'équation d'une droite d et, réciproquement, toute droite d a une équation du type a x + b y + c = 0.
Gauche-droite, haut-bas, et avant-arrière. Ces trois dimensions, ou axes, s'appellent généralement X, Y et Z. Ces axes nous servent à naviguer dans notre monde virtuel en 3D. Ils permettent de mesurer la position des objets, leur taille ou encore la distance qui les sépare.
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.
Repérage dans l'espace
x est l'abscisse de A, y est son ordonnée et z est sa cote. La droite sur laquelle on lit les abscisses des points est appelée axe des abscisses, celle sur laquelle on lit les ordonnées des points est appelée axe des ordonnées et celle sur laquelle on lit les cotes est appelée axe des cotes.
L'abscisse d'un point correspond au nombre d'unités de graduation entre l'origine (O) et le point. Tu peux donc déterminer l'abscisse d'un point en comptant les unités de graduation à partir de l'origine. Il y a 2 unités de graduation entre l'origine et le point C. Le point C a pour abscisse 2, on note C(2).
Le tracé d'un graphique se fait à partir d'un relevé de couples de données (par exemple, le temps et la température). L'évolution est ensuite reportée sur une feuille à deux axes (abscisses et ordonnées). Les points sont placés sous forme de croix et reliés à la main.
Repérer une fraction sur une demi-droite graduée
À partir de l'unité de longueur d'une demi-droite graduée, on peut définir une graduation avec des nombres entiers, décimaux ou avec des fractions. Sur une demi-droite graduée, le nombre associé à un point est appelé abscisse de ce point.