C'est la valeur que la variable statistique X prend le plus fréquemment. Quand la variable est discrète et les valeurs non groupées le mode est le Xi de la classe qui a le plus grand effectif.
La proportion de la population prenant la valeur xi est donnée par la fréquence : fi = ni n . La proportion de la population prenant une valeur inférieure ou égale `a xi est donnée par la fréquence cumulée des i premi`eres classes : Fi = f1 + f2 + ··· fi = Ni n .
En statistiques, cette droite est appelée la droite de régression linéaire des points (xi,yi). (xi − x)2 = (x1 − x)2 + ··· + (xn − x)2 n . n − x2 .
Le centre de classe permet de séparer en deux parties égales une série statistique comprenant la même amplitude de nombre des deux côtés. Pour cela, on effectue la moyenne des valeurs extrêmes de chaque classe. Ainsi, si l'on veut connaitre le centre de classe d'une série de [14 ; 19], on fera (14 + 19) / 2 = 17,5.
En mathématiques, l'écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
Comment est structuré le tableau de recueil de données ? LIGNES: On trouve les unités statistiques qui sont les plus petits éléments décris par une enquète. COLONNE: On trouve les variables . AU CENTRE: On trouve les valeurs différentes que prennent les variables pour chacune des unités statistiques.
L'effectif représente le nombre d'individus correspondant à chaque caractère de la population. On le note ni. Le nombre total d'individus constituant la population s'appelle l'effectif total. Il est noté N.
Pour la calculer, on additionne les valeurs de la série, puis on divise le résultat par le nombre de ces valeurs. Exemple : Dans la série 50; 66; 0; 4; 3, la moyenne se calcule ainsi : on additionne les valeurs 50+66+0+4+3=123, et on divise le résultat par 5 car il y a 5 valeurs.
Cov(X,X) = V(X). Donc, faisons un parallèle avec le théorème de König : la covariance est la moyenne du produit des valeurs de deux variables moins le produit des deux moyennes.
Donc si X et Y sont deux v.a. indépendantes, alors var(X + Y ) = var(X) + var(Y ). Définition (plus faible que l'indépendance) : deux v.a. X et Y sont non- corrélées si cov(X, Y )=0. Il suffit donc que X et Y soient non-corrélées pour que var(X + Y ) = var(X) + var(Y ).
Par conséquent, les corrélations sont généralement exprimées à l'aide de deux chiffres clés : r = et p = . Plus r est proche de zéro, plus la relation linéaire est faible. Les valeurs positives de r indiquent une corrélation positive lorsque les valeurs des deux variables tendent à augmenter ensemble.
Nombre réel d'individus constituant un groupe : L'effectif d'une classe. 2. Nombre d'individus entrant dans la composition d'une armée ou d'une formation militaire.
L'effectif d'une valeur est le nombre de fois où cette valeur apparait. L'effectif total est le nombre total d'individus de la population étudiée. La fréquence d'une valeur est le quotient de l'effectif de cette valeur par l'effectif total.
Calculer l'effectif total
On calcule N, l'effectif total de la série statistique grâce à la formule N = \sum_{i=1}^{p}n_i. Où n_i est l'effectif associé à la valeur x_i.
Selon une terminologie classique, ce sont la statistique descriptive et la statistique mathématique.
1.1) Les indicateurs de tendance centrale
Les indicateurs de tendance centrale comme la moyenne ( ̅) et la médiane ( Me ) et le mode ( Mo ) sont des mesures qui indiquent la position où semble se rassembler les valeurs de l'échantillon.
L'effectif cumulé croissant d'une valeur est égal à la somme de l'effectif de cette valeur plus les effectifs des valeurs qui lui sont inférieures.
On calcule la fréquence cumulée en ajoutant chaque fréquence tirée d'un tableau de distribution de fréquences à la somme de celles qui précèdent. La dernière valeur sera toujours égale au total des observations, puisque toutes les fréquences auront déjà été ajoutées au total précédent.
Le nombre de classes est ici une puissance de deux. On sépare l'intervalle de départ en deux en prenant comme valeur de séparation la moyenne globales des valeurs. On recommence ensuite en découpant chaque classe en deux en prenant comme comme valeur de séparation la moyenne des valeurs de la classe.
Elle permet de caractériser la dispersion. des valeurs par rapport à la moyenne. Ainsi, une distribution avec une même espérance et une variance plus grande apparaîtra comme plus étalée. Le fait que l'on prenne le carré de ces écarts à la moyenne évite que des écarts positifs et négatifs ne s'annulent.
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
La formule de la variance est V= ( Σ (x-μ)² ) / N. On démontre que V= ( (Σ x²) / N ) - μ². Cette formule est plus simple à appliquer si on calcule la variance à la main.