Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
À partir de l'expression c(h) nous allons donc "faire tendre" h vers 0 et alors c(h) va "tendre vers" f'(a). On pourrait penser que pour calculer f'(a) il suffit donc de calculer c(h) puis remplacer h par zéro.
Le coefficient directeur de la droite (AB) est égal à : f (b) − f (a) b− a . égal à : f (a + h) − f (a) a + h − a = f (a + h) − f (a) h . tend vers 0. Ce coefficient directeur s'appelle le nombre dérivé de f en a.
Re : Dérivée = 0
Si une dérivée est nulle en tout point, c'est que la fonction est contante, c'est-à-dire que pour tout x, f(x)=k avec k un réel.
Par exemple la fonction f est définie sur [0;+∞[ : ainsi les nombres x appartenant à l'intervalle [0;+∞[ pourront avoir une image par f. Les autres nombres ne pourront pas en avoir.
Repérer la tangente sur le graphique
Repérons sur le graphique la tangente à Cf au point d'abscisse a si elle est déjà tracée. Si la tangente est horizontale, on s'arrête et on conclut sans plus de calculs que f'(a) = 0.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
Principe. Pour calculer l'image de f (par exemple), c'est à dir calculer f(2), on remplace x par 2 dasn l'expression de f(x), tout simplement.
Les antécédents de 0 par f sont \dfrac{1}{2} et 4. L'antécédent de 0 par f est 4. L'antécédent de 0 par f est −4. 0 n'admet pas d'antécédent par f.
A partir de la définition de la fonction
Donc l' antécédent de 1 par f est 0 .
L'image de 0 par f est 0 + 3 = 3, soit f(0) = 3. L'antécédent de 3 par f est 0.
Pour lire graphiquement le nombre dérivé de f en a, on lit le coefficient directeur de la tangente à la courbe au point d'abscisse a ou on le calcule avec la formule xB−xAyB−yA avec (AB) tangente en A à la courbe de f.
Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Re : L'inverse de x²
Maintenant c'est clair la réponse était bien évidemment 3x-² ^^.
Soit un nombre positif a > 0, alors son opposé est le nombre négatif - a < 0. Ainsi, l'inverse d'un nombre signifie que l'on inverse le numérateur et le dénominateur.
La fonction inverse est strictement croissante sur ] − ∞ ; 0 [ ]-\infty ; 0[ ]−∞;0[ et est strictement décroissante sur ] 0 ; + ∞ [ ]0 ; +\infty[ ]0;+∞[.
On cherche le ou les antécédents du nombre 2. on repère le nombre 2 sur l'axe des ordonnées et on dessine un chemin horizontal jusqu'à la courbe. on poursuit ensuite le chemin verticalement jusqu'à l'axe des abscisses et on lit le nombre cherché.
L'image d'un nombre x par une fonction f est le nombre f(x) qui lui est associé par cette fonction f. Calculons l'image de 3 par la fonction f. Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 3. Il s'agit donc de remplacer x par 3 dans l'expression de f.
Une fonction f est un procédé qui à un nombre x associe un nombre noté f(x). On note : f : x | f(x) on lit : la fonction f qui, à un nombre x, associe le nombre f(x). Le nombre f(x) est appelé image de x par la fonction f. Le nombre x est un antécédent de f(x) par la fonction f.
Les antécédents de 4 par f sont 2 et -2. Les antécédents de 1 sont 1 et -1. L'antécédent de 0 est 0. -1 n'admet pas d'antécédent car l'équation x² = -1 n'admet pas de solution (et oui un carré est TOUJOURS positif !)
Une fonction fait correspondre chaque nombre de gauche à un nombre de droite, que l'on représenter par une flèche : Le f au-dessus des flèches signifie que la fonction s'appelle f, mais on aurait très bien pu l'appeler par une autre lettre (les fonctions s'appellent généralement par des lettres, on prend souvent f).