Pour poser une addition en base 4, on utilise exactement les mêmes règles que d'habitude, il faudra juste faire très attention en additionnant et en ajoutant les retenues. Exemple : le nombre 14 s'écrit 32 en base 4, et le nombre 11 s'écrit 23 en base 4. restante : 1+3+2=12, j'inscrit mon résultat.
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
La base est définie par le nombre de signes différents qui permettent d'écrire un nombre. En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2). Dans une base « B », les chiffres ont tous une valeur inférieure à « B ». Ex : en base 5, les chiffres utilisés sont 0, 1, 2, 3, 4.
La base de 10, aussi appelée système décimal, est un principe de numération mathématique qui consiste à organiser une collection d'objets à dénombrer, en les regroupant par paquets de dix; par paquets de dix dizaine (=centaines), etc.
La méthode la plus simple pour convertir un nombre décimal en binaire est la méthode euclidienne. On divise le décimal par 2, on note le reste de la division 1 ou 0. On réapplique le même procédé avec le quotient précédent, et on met de nouveau le reste de côté. On réitère la division jusqu'à ce que le quotient soit 0.
La base 2 fait intervenir deux chiffres : 0 et 1. On se demande à quel nombre correspond l'écriture en base 2 suivante : $overline{10111}^2$. On décompose alors ce nombre en faisant intervenir des puissances de 2 successives.
La numération ternaire classique, ou à base 3, utilise les chiffres: 0, 1 et 2. On compte: 0, 1, 2, 10, 11, 20, 21, 22, 100 … En binaire on parle de bit; en ternaire, les chiffres sont appelés: trit (trinary digit).
Il existe quatre opérations de base en mathématiques : l'addition, la soustraction, la multiplication et la division.
En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes.
Conversion binaire décimale
Le premier rang (en partant de la droite) est le rang 0, le second est le 1, etc. Pour convertir le tout en décimale, on procède de la manière suivante : on multiplie par 20 la valeur du rang 0, par 21 la valeur du rang 1, par 22 la valeur du rang 2, [...], par 210 la valeur du rang 10, etc.
Le système de numération décimale utilise la base 10, ce qui signifie que chaque chiffre d'un nombre représente une puissance de 10. Ainsi, avec un nombre à trois chiffres, le chiffre de droite représente les unités (100 = 1), celui du milieu, les dizaines (101 = 10) et celui de gauche, les centaines (102 = 100).
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers. En base deux, pour décrire l'entier 1101, on pourra écrire : 1 unité, 0 deuzaine, 1 quatraine, 1 huitaine.
En géométrie plane, la base désigne : le côté inférieur (supposé horizontal) d'une figure plane (par exemple un triangle, un parallélogramme ou un trapèze).
Lorsqu'est venu le temps de représenter de grandes quantités, l'utilisation de 10 doigts et de 2 mains ne suffisait plus. Ainsi, entre le XIV et XI siècle av JC, c'est en Chine qu'est apparu le système décimale, soit la base 10.
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre ou bien que la partie { u , v , w } est une partie génératrice de R 3 .
Le terme quatre opérations peut désigner : Les quatre opérations arithmétiques usuelles : l'addition, la soustraction, la multiplication et la division qui sont en principe les seules opérations autorisées aux jeux de chiffres comme au Compte est bon.
Deux règles de priorité
Quand il y a des parenthèses, on effectue en premier les calculs entre parenthèses. Quand il y a plusieurs signes opératoires, on effectue les multiplications et les divisions avant les additions et les soustractions.
Pour passer du binaire en octal : on parcourt le nombre binaire de la droite vers la gauche en regroupant les chiffres binaires par paquets de 3 (en complétant éventuellement par des zéros). Il suffit ensuite de remplacer chaque paquet de 3 par le chiffre octal.
L'addition en base 2 fonctionne comme l'addition en décimal, mais attention car en binaire, 1 + 1 = 10 car 210 = 2110 = 102 : il faut donc placer 0 et mettre une retenue de 1 sur le bit suivant. Il faut que les nombres à additionner soient de même taille. On code les nombres sur 8 bits. En base 10, on a bien .