En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.
Pour calculer la largeur du rectangle, connaissant son aire et sa longueur, on divise l'aire par la longueur.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
En géométrie plane, la largeur est la plus petite des deux mesures d'un rectangle ; l'autre mesure, de taille plus importante, est nommée longueur. Le symbole de la largeur est « l » (lettre « l » minuscule) ; le symbole de la longueur est « L » (lettre « L » majuscule).
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
La formule de Héron stipule que l'aire 𝐴 d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle ou la moitié de son périmètre.
D'après le théorème de Pythagore, le triangle ABC est rectangle si : BC² = AB² + AC². Ainsi, d'après le théorème de Pythagore, BC² = AB² + AC². Alors, le triangle ABC est rectangle en A. Son hypoténuse est [BC].
L'aire d'un triangle est égale au produit de la longueur d'un côté du triangle (base relative b) par sa hauteur h relative divisé par 2. Aire (ABC) = (base × hauteur) ÷ 2 = (b × h) ÷ 2.
Pour calculer l'aire d'un triangle, il suffit de multiplier la base de ce triangle par sa hauteur, et de diviser par deux. La base du triangle est un côté du triangle que l'on choisit. Par exemple, si on imagine un triangle ABC, la base peut être le côté AB, le côté BC ou le côté CA. Peu importe.
Dans un rectangle, il y a deux "dimensions", deux mesures. Le plus long côté est la longueur, donc le côté en rouge sur la photo. Le côté plus court est la largeur du rectangle, donc en bleu sur la photo.
Ce principe est valable pour tout type de triangle. Périmètre du triangle = Côté+Côté+Côté. P=C+C+C.
La formule basique de détermination du volume d'un espace donné est la suivante : longueur x largeur x hauteur. Puisque longueur x largeur donne la surface en m², vous pouvez donc aussi faire surface en m² x hauteur pour avoir le mètre cube. Cette formule convient beaucoup plus aux figures rectangulaires.
Pour trouver les dimensions sur le plan, on divise les dimensions réelles par le dénominateur de l'échelle. La formule de calcul est : Dimensions sur le plan = Distance réelle/Dénominateur de l'échelle.
Quelle est la largeur d'un rectangle de longueur 8 cm et de périmètre 24 cm ? Périmètre = 2(longueur + largeur ) ; 12 = 8 + largeur ; largeur = 4 cm.
Calculer la longueur d'un segment dans un repère
A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
Le symbole de la longueur est « L » (lettre « L » majuscule). Notons qu'à la différence, le symbole de la largeur est « l » (lettre « l » minuscule).
Pour la diagonale [AC], étudier un des triangles rectangles ABC ou ADC, et y calculer AC avec le théorème de Pythagore : AC2 = AB2 + BC2 = L2 + l2 pour un rectangle de longueur AB = L et de largeur BC = l.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Calculer la longueur d'un côté avec le théorème de Pythagore
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux côtés de l'angle droit.
[AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2. Alors AC2 = BC2 − AB2 ou encore AC2 = 18,752−152. Donc AC2 = 126,5625, soit AC = 11,25 cm.