La moyenne est calculable pour les variables numériques, qu'elles soient discrètes ou continues. On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs. Ce calcul peut être fait à partir des données brutes ou d'un tableau de fréquences.
Elles servent à synthétiser la série étudiée au moyen d'un petit nombre de valeurs "caractéristiques". Moyenne : la valeur « moyenne » est égale au quotient de la somme de toutes les valeurs de la série par l'effectif total. Exemple: La moyenne de la série , , et est ( 4 + 1 + 7 ) / 3 = 12 / 3 = 4 .
Les trois mesures de tendance centrale les plus courantes sont : Moyenne Il s'agit de la moyenne arithmétique, qui est calculée en ajoutant un groupe de nombres, puis en divisant par le nombre de ces nombres. Par exemple, la moyenne de 2, 3, 3, 5, 7 et 10 est égale à 30 divisé par 6, ce qui donne 5.
La moyenne est l'indicateur le plus simple pour résumer l'information fournie par un ensemble de données statistiques : elle est égale à la somme de ces données divisée par leur nombre. Elle peut donc être calculée en ne connaissant que ces deux éléments, sans connaître toute la distribution.
Le calcul de l'effectif moyen annuel de l'entreprise s'effectue à partir de la somme des effectifs moyens mensuels de l'entreprise divisée par le nombre de mois au cours desquels des salariés ont été décomptés.
Diviser par l'effectif total
L'effectif total est la somme des effectifs de chaque valeur. La moyenne pondérée est obtenue en effectuant la division du résultat de l'étape 2 par l'effectif total. Le résultat de l'étape 2 (211) est divisé par l'effectif total (23).
σ ( X ) = V ( X ) = 1 N ∑ k = 1 N ( x k − X ¯ ) 2 . Si la série statistique est donnée par un tableau statistique (xi,ni) ( x i , n i ) , ce qui signifie que la valeur xi est prise ni fois, on peut directement calculer la variance par la formule : V(X)=1n1+⋯+nNN∑i=1ni(xi−¯X)2.
La moyenne est un des premiers indicateurs statistiques pour une série de nombres. Lorsque ces nombres représentent une quantité partagée entre des individus, la moyenne exprime la valeur qu'aurait chacun si le partage était équitable.
ni est l'effectif de la valeur xi (ou de la classe [ai,ai+1[). ni = n. Bi(xi,ni) (resp. Bi(xi,fi)) pour 1 ≤ i ≤ p.
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.
Calculer l'effectif total
L'effectif total correspond au nombre de valeurs au sein de la série statistique. Il existe 2 méthodes pour calculer l'effectif total: Compter une à une toutes les valeurs de la série. Additionner les effectifs de chaque valeur.
La moyenne d'une série est toujours comprise entre la plus petite valeur et la plus grande valeur de la série. Pour calculer la moyenne pondérée d'une série statistique présentée dans un tableau d'effectifs ou par un diagramme en bâtons : • On multiplie chaque valeur par l'effectif correspondant.
Ce calcul va permettre de réduire l'influence des observations les plus grandes d'une série de valeurs et d'augmenter celle des plus petites (mais ce en moindre mesure que pour la moyenne harmonique). La moyenne géométrique ne s'applique qu'aux nombres positifs.
La moyenne d'une série quantitative est égale à la somme des valeurs de la série divisée par l'effectif total. La moyenne de ce contrôle est égale à la somme de toutes ces notes, divisée par le nombre de notes, c'est-à-dire par 32 : m=32347≈10,8 (arrondie au dixième).
La moyenne est calculable pour les variables numériques, qu'elles soient discrètes ou continues. On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs. Ce calcul peut être fait à partir des données brutes ou d'un tableau de fréquences.
Calculer l'effectif total
On calcule N, l'effectif total de la série statistique grâce à la formule N = \sum_{i=1}^{p}n_i. Où n_i est l'effectif associé à la valeur x_i.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
La moyenne d'une série statistique se calcule en sommant toutes les valeurs puis en divisant par l'effectif total. Lorsque les valeurs sont des nombres, Vous pouvez calculer la moyenne en faisant la somme des valeurs multiplier par son effectif, le tout divisé par l'effectif total.
Dans ce cas, il faudra d'abord calculer le centre de chaque intervalle en faisant la moyenne des deux bornes de l'intervalle. Deuxième étape : il faudra multiplier chaque centre d'intervalle par l'effectif correspondant. Enfin, il restera à diviser le résultat par l'effectif total.
Moyenne : La moyenne arithmétique est la somme des valeurs de la variable divisée par le nombre d'individus. La variance : La variance est la moyenne des carrés des écarts à la moyenne. L'écart-type : c'est la racine carrée de la variance.
On effectue une étude statistique par le relevé de certaines données sur une population. Les données sont, suivant les besoins, sous forme de listes, de tableaux d'effectifs ou de diagrammes. À partir de ces données, on effectue des calculs qui nous renseignent sur cette étude.