Le nombre d'or, aussi appelé section dorée, proportion dorée ou divine proportion est une proportion définit comme le seul rapport a/b entre deux longueurs a et b. Le rapport de la somme a + b des deux longueurs sur la plus grande (a) est égal à celui de la plus grande (a) sur la plus petite (b) : (a + b)/a = a/b.
Dans une proportion, le produit des extrêmes est égal au produit des moyens. Si ab=cd a b = c d , alors a×d=b×c a × d = b × c .
Rapport relatif de grandeur existant entre une quantité et une autre, entre un nombre et un autre pris comme référence : Une proportion de un volume de riz pour deux d'eau.
On applique la règle fondamentale : 3 4 = 3 × 25 4 × 25 = 75 100 . Comme 75 100 > 73 100 , on peut conclure que 3 4 > 73 100 . Un pourcentage est une proportion par rapport à 100. Quatre écritures différentes du même nombre 3 8 .
Pour cela, on peut : - utiliser le coefficient de proportionnalité s'il est donné ; - passer par l'unité, c'est-à-dire trouver la valeur associée à une unité qui est le coefficient de proportionnalité ; - utiliser la linéarité en effectuant des additions et des multiplications.
DÉFINITION – Proportion Une proportion est un nombre qui permet de passer (par multiplication) de l'effectif d'une partie à l'effectif d'une autre partie (l'une des deux parties peut être le tout).
Le nombre qui permet de passer d'une suite de nombres à une autre s'appelle le coefficient de proportionnalité. Pour trouver ce coefficient, on prend la valeur de la 1re grandeur et celle de la 2e qui lui correspond. Puis on divise la 2e par la 1re.
Méthode. Une proportion correspond au rapport mathématique entre une partie et un ensemble : on l'obtient en divisant la partie par l'ensemble. Le pourcentage de répartition est égal à la proportion exprimée en %. Pour lire un pourcentage de répartition, il faut préciser l'ensemble par rapport auquel il est calculé.
Tester une différence de proportions entre deux populations revient à vérifier si cette différence suit une loi normale de moyenne nulle (donc centrée).
variables catégorielles.
Le test statistique le plus couramment employé pour comparer deux pourcentages est le test non paramétrique du Khi2 (on peut aussi écrire Chi2).
Cette proportion peut s'exprimer en pourcentage : p = 22,5 %. Exemple : Parmi les 480 élèves de 1ère, 15 % ont choisi la filière L. 15 % de 480 ont choisi la filière L, soit : 15%× 480 = 15 100 × 480 = 72 élèves.
Dans un tableau de proportionnalité, les produits en croix sont égaux. Si ce tableau est un tableau de proportionnalité, alors a ×d = b ×c.
Une proportion peut être exprimée en pourcentage en multipliant sa valeur par 100. Les proportions sont utiles pour comparer un nombre avec un total. Par exemple, dans un auditoire de 50 personnes, 5 sont gauchères.
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la deuxième ligne en multipliant les nombres correspondants de la première ligne par un même nombre. (Dans cet exemple ce nombre est 2,5 car 5/2 = 2,5 ; 7,5/3 = 2,5 ; 10/4 = 2,5 ; …).
Pour un test unilatéral à droite, la valeur de p est égale à un moins cette probabilité ; valeur de p = 1 - cdf(st). Pour un test bilatéral, la valeur de p est égale à deux fois la valeur de p du test unilatéral à gauche, si la valeur de la statistique de test de votre échantillon est négative.
On peut calculer la p-value correspondant à la valeur absolue de la statistique du t-test (|t|) pour les degrés de liberté (df) : df=n−1. Si la p-value est inférieure ou égale à 0,05, on peut conclure que la différence entre les deux échantillons appariés est significativement différente.
Le cas de deux échantillons indépendants :
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
C'est ce que permettent les proportions. Une proportion (ou part) exprime ainsi le rapport entre une partie d'un ensemble et cet ensemble, ou le rapport entre une première grandeur et une seconde grandeur de référence.
D'une façon générale, le coefficient multiplicateur associé à une augmentation est : k = 1 + t où t est le taux d'augmentation (ex : 1,35 = 1 + 0,35), et valeur finale = valeur initiale * k.
Deux grandeurs sont proportionnelles, si les valeurs de l'une s'obtiennent en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité.
Les électeurs votent pour un parti. Puis les sièges sont attribués aux différents partis proportionnellement au nombre de voix qu'ils ont obtenu. Les candidats élus sont pris dans chacune des listes dans leur ordre d'apparition.
On parle de proportionnalité lorsqu'il y a un lien entre deux séries de données : on passe de l'une à l'autre série en multipliant par un même nombre. Exemple : quand on achète un produit au kilo, le prix est proportionnel à la masse. Supposons que 1 kg de tomates coûte 2 euros.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.