Méthode On utilise la formule \cos ^{2}(x)+\sin ^{2}(x)=1 qui permet de relier le sinus et le cosinus d'un nombre. On résout l'équation associée. On choisit la bonne valeur en utilisant l'intervalle auquel appartient x.
Sinus = côté opposé / hypoténuse.
Valeur exacte
La division 64,5 ÷ 15 se termine, on dit aussi qu'elle « tombe juste ». L'écriture décimale 4,3 est donc la valeur exacte du quotient. On peut écrire 64,5 ÷ 15 = 4,3.
La cosécante est l'inverse du sinus. Le sinus est le quotient de la longueur du côté opposé par celle de l'hypoténuse, donc la cosécante est le quotient de la longueur de l'hypoténuse par celle du côté opposé.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
On peut résumer ainsi chacune de ces formules trigonométriques : Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse. Tangente(angle) = Opposé ÷ Adjacent.
Lorsque l'on connaît la valeur d'un cosinus, on peut déterminer la valeur du sinus correspondant sur un intervalle I donné grâce à la formule cos^2\left(x\right)+ sin^2\left(x\right) = 1.
L'inverse d'un nombre s'obtient en mettant ce nombre sur 1, en faisant donc "1 ÷ (nombre)". Vous le voyez, l'inverse d'un entier est une fraction qu'il faut laisser telle quelle. Il n'y a pas à faire de calcul pour obtenir un nombre décimal. Ainsi, l'inverse de 2 est : 1 ÷ 2 = 1/2.
Calcul de sin(60 o). On tape 60 sin = ou sin 60 = suivant le modèle de calculatrice. Il s'affiche 0,86602540. Attention ce n'est qu'une valeur approchée de sin(60 o).
Valeur qui n'est pas approchée. Exemple : 1/3 est une valeur exacte.
Comment calculer le pourcentage d'une valeur
La formule pour calculer le pourcentage d'une valeur est donc : Pourcentage (%) = 100 x Valeur partielle/Valeur totale. Par exemple, si un panier de légumes contient 15 items dont 10 légumes et 5 fruits, le pourcentage de fruits dans le panier est de 100*5/15= 33,33 %.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
En d'autres termes, le sinus d'un angle est négatif pour tout angle du troisième ou du quatrième quadrant.
On peut donc écrire que le sinus de 30 degrés est égal au côté opposé — c'est 𝑏 — divisé par l'hypoténuse — c'est 𝑐. Puisqu'on a ces valeurs, on peut remplacer 𝑏 par un et 𝑐 par deux, ce qui donne que le sinus de 30 degrés est égal à un sur deux, ou un demi.
Les fonctions sinus et cosinus n'ont pas de limite en l'infini.
Par exemple : l'opposé de 7 est égal à –7 car 7 + (–7) = 0. l'opposé de -0,3 est 0,3 car –0,3 + 0,3 = 0.
Calcul du sinus
On veut obtenir une valeur approchée du sinus d'un angle de 50°. On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près).
des entiers relatifs, seuls 1 et –1 ont un inverse : eux-mêmes respectivement. des rationnels, l'inverse de 2 est 1⁄ 2 = 0,5 et l'inverse de 4 est 0,25.
Définition. Fonction inverse : La fonction qui à tout nombre réel x non nul associe son inverse x1 est appelée fonction inverse.
Exemples. L'élément opposé de 8 est –8, car : 8 + (–8) = 0. L'élément opposé de –6,5 est 6,5, car : 6,5 + (–6,5) = 0.
Exemples. L'inverse de 2 est 12 parce que 2×12=1.
Exemple : Dans un triangle TRI rectangle en R, on connaît IT = 8 et IR = 4. On cherche l'angle de sommet T. IR est le côté opposé au sommet T et IT l'hypoténuse (côté opposé au sommet R). On utilise donc le sinus.
Autrement dit, le sinus d'un angle est égal au cosinus de son complémentaire. Cette démonstration n'est valable que si est compris entre et . Vous apprendrez plus tard que cette relation est vraie quelle que soit sa valeur en radians.
L'hypoténuse est toujours le côté le plus long du triangle rectangle (directement opposé à l'angle droit), le côté opposé est le côté directement opposé à l'angle en question, et le côté adjacent est le côté à côté de l'angle (qui n'est pas l'hypoténuse).