Pour un triangle équilatéral, chaque côté est de même longueur, ce qui signifie que le côté adjacent au 60° angle mesure la moitié de l'hypoténuse. Si nous appelons la longueur de l'hypoténuse 2, la longueur du côté adjacent est de 1. Nous pouvons donc diviser 1 par 2 pour trouver le cosinus de 60°.
Donner un arrondi au millième. cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
Trigonométrie Exemples
La valeur exacte de sin(60°) sin ( 60 ° ) est √32 . Le résultat peut être affiché en différentes formes.
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Comme l'angle 45° se situe dans le deuxième quadrant, cos(45°) est négatif. On peut donc en déduire que cos(45°) = -√1/2 = -0,7071.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Dans un triangle quelconque, relation qui permet d'établir que le carré d'un côté est égal à la somme des carrés des deux autres côtés moins deux fois le produit de ces côtés par le cosinus de l'angle qu'ils forment. Dans le triangle ABC ci-dessous, la loi du cosinus prend les trois formes suivantes : a2=b2+c2–2bccosα
Si tu connais le cos (ou le sin ou la tan) et que tu refuses la calculatrice, tu peux prendre les tables trigonométriques (Bouvar et Ratinet par exemple) pour déterminer l'angle avec la précision désirée.
Le sinus de 𝐴 moins 𝐵 est égal à sin 𝐴 cos 𝐵 moins cos 𝐴 sin 𝐵. Nous pouvons donc réécrire sin 180 moins 𝑥 comme sin 180 multiplié par cos 𝑥 moins cos 180 multiplié par sin 𝑥 Nous savons que le sinus de 180 degrés est égal à zéro. Le cos de 180 degrés est égal à moins un. Zéro multiplié par cos 𝑥 est égal à zéro.
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
(ou sur des calculatrices plus anciennes : entrer la mesure de l'angle puis appuyez sur COS). Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter.
On appelle cosinus de l'angle ABC , le quotient de la longueur du côté adjacent à l'angle ABC par la longueur de l'hypoténuse.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
Si on connaît les angles A, B et C, on peut donc déduire l'angle D en soustrayant la somme des 3 autres à 360, soit D = 360 - (A + B + C). Le calcul des angles d'un rectangle ABCD est très simple dans la mesure où chacun de ses angles est droit, soit égal à 90°.
Nous voyons que le cosinus de 135 degrés est égal au cosinus de 225 degrés. Ceci est égal à moins cosinus 45 degrés.
Le sinus de 30 degrés est égal à 0,5.
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .