Prenons un exemple avec 108 et 60.
Les diviseurs de 60 sont 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 et 60. Les diviseurs communs de 60 et de 108 sont donc 1, 2, 3, 4, 6 et 12. Ainsi, on a PGCD(108;60) = 12.
36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. Définition : Si a et b désignent deux nombres entiers, on note PGCD (a ; b) le plus grand des diviseurs positifs à a et b.
* 84 = 2 x 2 x 3 x 7. Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12.
Les diviseurs communs a et b sont les diviseurs du PGCD(a;b). Pour trouver les diviseurs communs à 15 et 20, il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5.
D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
Le plus grand de ces diviseurs est 18. On note : PGCD(72, 54) = 18.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
utilise le pgcd quand on s'occupe des diviseurs communs à ces nombres et qu'on est amené à chercher le plus grand de ces diviseurs. Le PGCD de différents nombres est un diviseur de chacun des nombres et est donc toujours inférieur ou égal à chacun des nombres.
Si deux nombres entiers n'ont aucun diviseur commun autre que 1, alors leur pgcd est égal à 1 ; on dit que ces nombres sont premiers entre eux. Quand on divise deux nombres entiers par leur pgcd, on obtient deux nombres premiers entre eux.
2) 756 441 n'est donc pas irréductible. On calcule le PGCD de 756 et 441 (ce sera un multiple de 3) ; il s'agit de 63.
Un tel entier existe bien, et il en existe un seul vérifiant ces trois propriétés qui est le PGCD au sens de la définition précédente quand (a,b) ≠ (0,0). Avec cette définition PGCD(0,0)=0.
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
60 = 24 × 2 + 12 et 24 = 2 × 12, donc 12 est le pgcd de 60 et 24.
162 = 2 × 81 = 2 × 9 × 9=2 × 32 × 32 = 2 × 34. 108 = 2 × 54 = 2 × 2 × 27 = 22 × 33. 2. Les diviseurs communs à 162 et 108 sont : 1 ; 2 ; 3 ; 6 ; 9 ; 18 ; 27 et 54.
Le plus grand diviseur commun à 125 et 175 est 25.
PGCD (84 ; 270) = 6.
On dit que deux nombres sont premiers entre eux lorsqu'ils n'ont que 1 comme diviseur commun.
Par exemple, les diviseurs communs à 36, 48 et 60 sont 1, 2, 3, 4, 6 et 12 donc PGCD(36, 48, 60) = 12.
PGCD (34 ; 51) = 17, donc les nombres 25 et 48 ne sont pas premiers entre eux. Une fraction est irréductible, si le PGCD du numérateur et du dénominateur est égal à 1.
Le triple de 4 est : 4 × 3 = 12.
Les diviseurs de 132 sont : 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 462) est la suivante : 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462. Pour que 462 soit un nombre premier, il aurait fallu que 462 ne soit divisible que par lui-même et par 1.