Le produit de deux polynômes est le polynôme obtenu en multipliant chaque terme de l'un par chaque terme de l'autre. Par exemple, (−x3+2x2+1)(3x−2)=−3x4+6x3+3x+2x3−4x2−2=−3x4+8x3−4x2+3x−2.
Multiplier deux polynômes implique l'utilisation des règles sur les puissances et la distributivité de la multiplication sur l'addition. Diviser deux monômes, revient à diviser les coefficients, puis à diviser les variables semblables en soustrayant les exposants.
Un polynôme du second degré P(x) = ax² + bx + c admet au plus deux racines. Le nombre exact de ses racines est déterminé par le signe d'un expression notée Δ qu'on appelle le discriminant. Δ = b² - 4ac.
Les principales étapes de cette méthode de résolution sont : On ramène l'équation du second degré à une variable sous la forme ax2+bx+c=0, a x 2 + b x + c = 0 , si ce n'est pas déjà le cas. On évalue le discriminant b2−4ac b 2 − 4 a c et on vérifie s'il vaut la peine de poursuivre.
c=ax1x2. f est bien une fonction polynôme du second degré.
Pour déterminer le PGCD de deux polynômes on applique l'algorithme d'Euclide, utilisant les divisions euclidiennes successives des polynômes et les résultats suivants : dans la division euclidienne de F par G , si F = G Q + R , alors P G C D ( F , G ) = P G C D ( G , R ) = P G C D ( G , λ R ) où λ est un scalaire non ...
Égalité de deux polynômes
et g(x) = a'x2 + b'x + c'-où a, b, c, a', b' et c' sont des nombres réels. Commençons par vérifier que si les deux fonctions f et g ont le même degré et les mêmes coefficients, alors elles sont égales. donc f = g .
qui est appelée méthode de Horner. Un élément de la ligne inférieure s'obtient en multipliant l'élément qui le précède par le nombre figurant dans la première colonne, en plaçant le résultat dans sa colonne et en effectuant la somme de deux premiers nombres de la colonne.
Le polynôme caractéristique d'une matrice carrée A est det(A - λI) (c'est un polynôme en λ). ∣ ∣ ∣ ∣ a - λ b c d - λ ∣ ∣ ∣ ∣ = (a -λ)(d -λ)-cd = λ2 -(a +d)λ+ad -bc .
Calcul du produit de deux entiers dans la même dizaine
Pour cela il suffit de prendre le 1er nombre et d'y ajouter le chiffre des unités de l'autre puis de multiplier le résultat par les dizaines du second nombre puis d'additionner à ce résultat la multiplication des unités des deux nombres.
Polynôme : qu'est-ce que c'est ? Somme d'expressions algébriques formées par des termes où figurent une ou plusieurs variables. Exemple : 3X3 + 56X2 + 2 est un polynôme de la variable X.
Les polynômes
Un polynôme est en fait la somme ou la différence algébrique de plusieurs monômes. On utilise couramment le mot « polynôme » pour désigner les expressions contenant plusieurs termes. Ces termes peuvent être constants ou algébriques. 2ab−3r+9u+xy−7 2 a b − 3 r + 9 u + x y − 7 est un polynôme.
3.1 Factorisation d'un polynôme
Déterminer les réels a, b et c tels que, pour tout x de R, on ait : f (x) = (x −1)(ax2 +bx +c). Réponse : pour tout x de R : On identifie les coefficients des termes de même degré. a b c = = = 1 −1 2 Conclusion : pour tout x de R, f (x) = (x −1)(x2 −x +2).
On effectue la division euclidienne du plus grand par le plus petit et on recommence avec le diviseur et le reste, jusqu'à ce que le reste soit nul. Le PGCD est alors le dernier reste non nul.
Diviseurs et divisibilité dans l'ensemble des polynômes
Soient les polynômes P, Q et R. Si P = Q × R P=Q×R P=Q×RP, equals, Q, ×, R, alors Q et R sont des diviseurs de P.
- Si Δ > 0, alors l'équation admet deux solutions réelles notées x1 et x2. On a alors : x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0.
+ β , où α et β sont deux nombres réels. Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Une fonction polynôme de degré 2 est une fonction définie sur R dont l'expression algébrique peut être mise sous la forme f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c avec a ≠ 0 a \ne0 a=0.