Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer). Démonstration Voir Activité B p. 214.
On cherche les coordonnées de deux points distincts A ( x A ; y A ) et B ( x B ; y B ) de la droite d . On sait alors que A B → est un vecteur directeur de d .
(xB - xA ; yB - yA) est l'un des vecteurs directeurs de cette droite. Si une droite a pour équation réduite y =ax + b alors il suffit de déterminer deux points de cette droite pour trouver un vecteur unitaire.
Si la droite est écrite sous forme réduite (soit y=ax+b y = a x + b ), le vecteur →u(1;a) u → ( 1 ; a ) fait l'affaire. Si son équation apparaît sous forme cartésienne, on prend →u(−β;α) u → ( − β ; α ) ou →u(β;−α) u → ( β ; − α ) . Si cette droite passe par un point A , on peut alors l'écrire D(A;→u) D ( A ; u → ) .
On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D. ( )≠ 0;0 ( ). Cette équation est appelée équation cartésienne de la droite D.
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P.
Les vecteurs directeurs permettent d'étudier le parallélisme de deux droites. Théorème : Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs sont colinéaires. Il existe beaucoup de couples de vecteurs directeurs du plan.
Représentation paramétrique d'un plan. Un plan est défini par un point par lequel il passe et deux vecteurs non colinéaires, appelés vecteurs directeurs. →AM=t→u+t′→v où t∈R et t′∈R. →AM=t→AB+t′→AC où t∈R et t′∈R.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Vecteur directeur :
Le vecteur directeur d'une droite n'est pas unique : deux points quelconques de la droite peuvent définir un vecteur directeur. Si on a deux vecteurs ⃗ u et ⃗ v directeurs de la droite (d), alors ⃗ u et ⃗ v sont colinéaires et on a ⃗ ⃗ det(u ,v )=0.
Points clés
Le vecteur défini par deux points 𝐴 et 𝐵 , noté 𝐴 𝐵 , peut être calculé en soustrayant le vecteur ⃑ 𝐴 au vecteur ⃑ 𝐵 tel que 𝐴 𝐵 = 𝑂 𝐵 − 𝑂 𝐴 .
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ).
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 2, car la droite coupe l'axe des ordonnées au point 2. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Propriété : L'équation a x + b y + c = 0 avec a ≠ 0 ou b ≠ 0 est l'équation d'une droite d et, réciproquement, toute droite d a une équation du type a x + b y + c = 0.
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
La formule pour calculer la pente m d'une droite qui passe par les points P(x1, y1) et Q(x2, y2) est : m=∆y∆x = y2 – y1x2 – x1, où ∆y représente la variation des ordonnées et ∆x représente la variation des abscisses.
m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
L'équation de la droite est donnée sous forme cartésienne : − 1 5 𝑥 + 3 𝑦 − 1 2 = 0 . Pour obtenir le coefficient directeur de la droite, il faut convertir l'équation ci-dessus sous la forme réduite 𝑦 = 𝑚 𝑥 + 𝑏 , où 𝑚 est le coefficient directeur de la droite et 𝑏 est l'ordonnée 𝑦 à l'origine.
1) Equations paramétriques d'un plan :
Une équation paramétrique de P est une paramétrisation de M(x,y,z)∈P par de la forme : {x=xA+txu+t′xvy=yA+tyu+t′yvz=zA+tzu+t′zv (t,t′∈R).
Pour déterminer une équation cartésienne d'un plan passant par A et de vecteur normal \vec{n}, on peut : donner la forme générale de l'équation : ax + by + cz + d = 0 ; remplacer les coefficients a, b, c par les coordonnées du vecteur \vec{n} ; déterminer ensuite la valeur de d à l'aide des coordonnées du point A.
Si on connaît un point et un vecteur directeur de la droite
Pour représenter une droite lorsque l'on connaît un point et un vecteur directeur, il suffit de placer le point connu et de placer un second point grâce au vecteur directeur.
Re : Différence entre un vecteur normal d'une droite et un vecteur directeur. Oui, il y a une différence, le vecteur normal d'un segment [AB] est perpendiculaire à ce segment, et le vecteur directeur et parallèle ( il dirige le segment ).