► l'utilisation de pourcentages : l'écart relatif en pourcentage se calcule en faisant le rapport suivant : (écart absolu / élément de comparaison) × 100.
L'écart-type relatif (RSD ou %RSD en anglais) est la valeur absolue du coefficient de variation. Il s'exprime généralement sous forme de pourcentage. RSD est égal à l'écart-type rapporté à la moyenne et multiplié par 100.
Le taux de variation permet d'étudier, en pourcentage, l'évolution de la valeur d'une variable sur une période donnée. Pour cela, il faut calculer la variation absolue, c'est-à-dire faire la différence entre la valeur d'arrivée et la valeur de départ, que l'on divise par la valeur de départ, le tout multiplié par 100.
Lors d'expériences, un écart relatif est une valeur calculée qui permet de déterminer si le produit ciblé par l'expérimentation respecte son cahier des charges ou non. Plus l'écart relatif est petit, plus la grandeur mesurée est satisfaisante car elle est proche de la grandeur de référence attendue.
écart type n. m. Définition : Mesure de la dispersion d'une série d'observations statistiques par rapport à leur moyenne, qui s'obtient en extrayant la racine carrée de la variance.
L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
Écart relatif
Généralement, on l'exprime sous la forme d'un pourcentage et plus celui-ci est faible, plus la valeur obtenue est proche de la valeur attendue. Au lycée, on estime généralement qu'une mesure est satisfaisante si l'écart relatif est inférieur à 5 % ou 10 %.
L'incertitude relative ∆x/x représente l'importance de l'erreur par rapport à la grandeur mesurée. L'incertitude relative n'a pas d'unités et s'exprime en général en % (100∆x/x).
Définition : l'écart absolu moyen est la moyenne de la valeur absolue des écarts à la moyenne. Autrement dit, c'est la distance moyenne à la moyenne. Bien qu'il soit moins utilisé, on peut calculer de la même manière l'écart absolu médian qui est la moyenne des écarts à la médiane.
Si on veut trouver l'écart entre deux nombres positifs comme 5 et 9. Comme les deux nombres sont positifs, lorsqu'on tente de faire la soustraction, cela fonctionne comme d'habitude : 9 - 5 = 4. L'écart est donc de 4.
Remarque : la variation absolue est une quantité algébrique (elle peut être négative) qui s'exprime dans la même unité que la grandeur étudiée. Ce nombre au format décimal peut s'exprimer sous la forme d'un pourcentage : −0,075 = −7,5%. Le chiffre d'affaires a baissé de 7,5% entre 2016 et 2017.
Pour comparer deux grandeurs de même nature, il est judicieux d'exprimer ces deux grandeurs dans la même unité et d'écrire l'expression numérique du résultat en notation scientifique. La notation scientifique d'une valeur numérique est son écriture sous la forme a,bcd × 10n avec 1≤a<10.
Le plus souvent, l'écart de salaires hommes-femmes est présenté du point de vue masculin. On rapporte cet écart au niveau de salaire « étalon », celui des hommes. Pour notre calcul, cela donne 100 moins 83,4 = 16,6. Divisé par 100 = 16,6 %.
Il existe une formule simple qui permet de calculer le pourcentage d'augmentation d'un salaire : ([nouvelle valeur - ancienne valeur] / ancienne valeur) x 100.
L'erreur absolue, notée δX, est l'écart qui existe entre la valeur mesurée et sa valeur théorique exacte exprimée avec la même unité. L'erreur relative est le quotient de l'erreur absolue à la valeur exacte. Ω ± % = ( . ± . )
Comme le théorème de Pythagore, la Précision du système est égale à la racine carrée de la somme des carrés de la Précision absolue de chaque composant.
L'erreur absolue a toujours la même dimension (même unité) que le résultat de la mesure lui-même. L'erreur relative n'a pas de dimension et s'exprime en % ou en ‰.
La manière la plus simple pour calculer l'incertitude à partir de l'ensemble des valeurs du mesurande est d'utiliser la demi-étendue. L'étendue de la mesure est égale à la différence entre la valeur la plus grande et la valeur la plus petite du mesurande.
L'écart type, habituellement noté s lorsqu'on étudie un échantillon et σ lorsqu'on étudie une population, est défini comme étant une mesure de dispersion des données autour de la moyenne.
L'écart-type s'obtient simplement en calculant la racine carrée de la variance. D'où σ(X)=Var(X) =4,41 =2,1.
Nous savons que la variance est une mesure du degré de dispersion d'un ensemble de données. On la calcule en prenant la moyenne de l'écart au carré de chaque nombre par rapport à la moyenne d'un ensemble de données. Pour les nombres 1, 2 et 3, par exemple, la moyenne est 2 et la variance, 0,667.