Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
La règle de Sarrus (nommée d'après Pierre-Frédéric Sarrus) est un procédé visuel, qui permet de retenir la formule de calcul des déterminants d'ordre 3. La règle de Sarrus consiste à écrire les trois colonnes de la matrice et à répéter, dans l'ordre, les deux premières lignes en dessous de la matrice.
Le déterminant d'une matrice diagonale ou triangulaire (supérieure ou inférieure) est égal au produit des termes de la diagonale principale. Comme pour les déterminants d'ordre 2, la valeur du déterminant est égale au produit des termes de la diagonale principale.
Dé nition 2.3 (Déterminant de trois vecteurs) Soit u =x1i + y1j + z1k, v =x2i + y2j + z2k, w =x3i + y3j + z3k trois vecteurs de E.
Il suffit de rentrer chaque matrice de façon "naturelle" élément par élément, séparé d'un espace en effectuant un saut de ligne à chaque fin de ligne de la matrice. Vous pouvez entrer des entiers relatifs et des fractions de la forme -3/4 par exemple.
Il est très facile de calculer le déterminant d'une matrice 2 x 2 car il y a une formule très simple. Le déterminant se calcule en multipliant les deux termes de la diagonales : a x d, puis les deux autres : b x c. On soustrait alors, ce qui donne det(A) = a x d – b x c.
Si une matrice a une ligne identiquement nulle, alors son d éterminant est nul. Si une matrice a deux lignes égales, son déterminant est nul. Si dans une matrice on ajoute à une ligne un multiple d'une autre ligne, le déterminant ne change pas.
Définition : Soit (→i,→j) une base orthonormée, Soient →u(x1y1) et →v(x2y2) deux vecteurs exprimés dans cette base, On appelle déterminant des deux vecteurs →u et →v le réel x1y2−y1x2.
La trace d'une matrice est l'addition des valeurs sur sa diagonale principale (en partant du coin en haut à gauche et en se décalant d'une case vers la droite et vers le bas).
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
Le déterminant d'une matrice est égal à celui de sa transposée : si M ∈ Mn(R), alors det(M) = det(tM).
Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n–2 A. Si P(X) = det(A – X In) est le polynôme caractéristique de A et si Q est le polynôme défini par Q(X) = (P(0) – P(X))/X, alors : t(comA) = Q(A).
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
Définition : Si A est une matrice carrée (ai,j)1≤i,j≤n ( a i , j ) 1 ≤ i , j ≤ n , les mineurs principaux sont les déterminants des matrices tronquées (ai,j)1≤i,j≤k ( a i , j ) 1 ≤ i , j ≤ k , pour k allant de 1 à n .
On trouve généralement devant lui un petit mot, appelé le déterminant. Généralement, il est formé avec un seul mot, mais il peut être constitué avec 2 mots. Voici quelques exemples : un, une, des, le, la, les, l', du, de l'
Gauss utilise pour la première fois le mot « déterminant », dans les Disquisitiones arithmeticae en 1801. Il l'emploie pour ce que nous qualifions aujourd'hui de discriminant d'une forme quadratique binaire et qui est un cas particulier du déterminant moderne.
Si la matrice n'est pas carré, elle n'est pas inversible ! et le déterminant d'une matrice non carrée n'existe pas ! 2) Si A est inversible (et donc carrée) alors l'inverse de A s'écrit A^-1 et A*A^-1 = identité.
Re : Diagonalisation de matrice 4*4
Donc c'est aussi det(B-xI). Les valeurs propres sont bien 1,1,-1,-1. Ensuite pour diagonaliser il faut trouver les vecteurs propres de 1, il faut résoudre Bv = 1v soit (B-1I)v = 0 (il y en a 2). Même chose pour -1: résoudre Bv = -1v soit (B+1I)v = 0, il y en a 2 aussi.
Le rang d'une matrice est égal au nombre de ses lignes sauf si l'une d'entre elles est combinaison linéaire des autres. On dira qu'une matrice est facile si l'une de ses colonnes a tous ses nombres nuls sauf exactement un.
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
1.1.
En dimension 2, le déterminant est très simple à calculer : det a b c d = ad − bc. C'est donc le produit des éléments sur la diagonale principale (en bleu) moins le produit des éléments sur l'autre diagonale (en orange).