La première chose à faire pour calculer la hauteur d'un triangle consiste à écrire le théorème de Pythagore, c2 = a2 + b2, où c est l'hypoténuse (le côté opposé à l'angle droit). Inversez le théorème pour résoudre a2 , c'est-à-dire a2 = c2 - b2 .
Dans le triangle ABC, on connaît déjà deux angles. Leur somme est égale à : 40 + 80 = 120°. La somme des mesures des angles d'un triangle est égale à 180°, donc : = 180 – 120 = 60°.
Si vous connaissez la base et l'aire d'un triangle, pour trouver sa hauteur, vous devez multiplier l'aire par 2 et diviser le résultat par la base. Pour trouver la hauteur d'un triangle équilatéral, utilisez le théorème de Pythagore, a^2 + b^2 = c^2.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
Ainsi donc, l'équation se présente simplifiée : a / sin(α) = c / 1 ou encore a / sin(α) = c. Trouvez l'hypoténuse en divisant la longueur du côté a par le sinus de l'angle α. Il faut opérer en deux temps : on calcule en premier sin(α), que l'on va inscrire, puis on divise la longueur a par ce résultat obtenu.
Méthode avec une équerre
Déposer un côté de l'angle droit de l'équerre sur la base du triangle. Aligner l'autre côté de l'angle droit de l'équerre avec le sommet du triangle. Tracer le segment qui part du sommet et qui rejoint perpendiculairement la base du triangle. Ce segment est la hauteur du triangle.
Un triangle est isocèle si une des hauteurs au moins partage ce triangle en deux triangles égaux (isométriques). Un triangle est isocèle si au moins deux de ses médianes ont même longueur. Propriétés vraies également pour les hauteurs et les bissectrices.
Dans le cas d'un triangle rectangle ABC rectangle en B, le cosinus de l'angle A est égal à la longueur du côté adjacent à l'angle A divisée par la longueur de l'hypoténuse, donc cos A = AB/AC.
Pour utiliser les formules de trigonométrie, il faut se situer dans un triangle rectangle. Ces trois rapports ne dépendent que de la mesure de l'angle considéré. Le cosinus et le sinus d'un angle aigu sont toujours compris entre 0 et 1.
Un triangle obtusangle possède 2 hauteurs à l'extérieur. La hauteur du troisième côté du triangle obtusangle n'a rien de particulier. Trace une droite perpendiculaire au troisième côté [TR] et qui passe par le sommet opposé S. Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle obtusangle.
Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des côtés de l'angle droit.
Remarque L'hypoténuse est le côté le plus long du triangle. Théorème: Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des c carrés des longueurs des deux autres côtés.
Théorème: "Les angles à la base d'un triangle isocèle sont égaux." Si G = 72°; Calculer I. Donc I = 180 - 144 = 36°.
Cas d'un triangle isocèle :
On veut calculer les angles \hat{O} et \hat{U}. Dans tout triangle isocèle, les deux angles à la base sont égaux. Donc \hat{U} = \hat{I} = 47°. On en déduit \hat{O} : \hat{O} = 180° – (47° + 47°) = 86°.
L ' aire d'un triangle isocèle est égale au produit de la longueur de la base par la longueur de la hauteur (issue de la base).
produit de l'hypoténuse par la hauteur issue du sommet de l'angle droit. Cette formule permet de calculer la hauteur du triangle rectangle : h = ba/c.
3. La hauteur. Définition : Dans un triangle, la hauteur issue d'un sommet est la droite qui passe par ce sommet et qui est perpendiculaire au côté opposé à ce sommet. Dans le triangle ABC, (h1) est la hauteur issue de C ; (h2) est la hauteur issue de A ; (h3) est la hauteur issue de B.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².