Divisez le nombre de départ par la plus grande puissance de 8. Dans le nombre 98, le 9 indique qu'il y a 9 dizaines. Ce chiffre de 9 a été obtenu en divisant 98 par 101, soit 10. En base 8, le principe est le même, il faut diviser le nombre à convertir par la plus forte puissance.
La conversion de 11012 en base 10 est telle que . La méthode la plus simple pour convertir un nombre décimal en binaire est la méthode euclidienne. On divise le décimal par 2, on note le reste de la division 1 ou 0. On réapplique le même procédé avec le quotient précédent, et on met de nouveau le reste de côté.
Pour réaliser cette conversion il suffit d'effectuer une succession de division par 2. Exemple : On souhaite convertir la valeur décimale 149(10) en un nombre binaire. La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
Il suffit de découper le nombre en paquet de 3 ou 4 bits(a partir de la droite) et de remplacer par la valeur correspondante. Les paquets sont de 3 bit pour l'octal et 4bits pour l'hexadécimal. L'hexadécimal et particulièrement pratique car avec 4 lettres un code exactement 4 bits soit un octet.
Pour passer du binaire en octal : on parcourt le nombre binaire de la droite vers la gauche en regroupant les chiffres binaires par paquets de 3 (en complétant éventuellement par des zéros). Il suffit ensuite de remplacer chaque paquet de 3 par le chiffre octal.
À chaque fois que l'on ajoute un symbole '0' à droite d'un nombre, on va multiplier par la base (16). Ainsi, A signifie 10 en base 10, A0 correspond à 160 et A00 à 2560 (10 x 16 x 16).
Ex : système de numération décimal (le nôtre). Dans 145, 1 = 1 centaine = 100, 4 = 4 dizaines = 40 et 5 = 5 unités = 5. La base est définie par le nombre de signes différents qui permettent d'écrire un nombre. En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2).
Si le nombre se termine par un zéro, le dernier zéro est remplacé par un : par ex. 100 (4) + 1 (1) = 101 (5). Les chiffres de base 10 sont utilisés entre parenthèses pour la comparaison.
Le système de numérotation en octal est un système à base 8. Cela signifie qu'avec cette base on compte de 0 à 7, contrairement au décimal où l'ont compte de 0 à 9.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes. Le bit de poids fort correspondant au reste obtenu à l'ultime étape de la division.
Pour savoir dans quelle colonne on doit placer le chiffre des unités et la virgule, il suffit de regarder quelle est l'unité de mesure du nombre. Pour convertir un nombre décimal, il faut déplacer la virgule d'un (ou plusieurs) rang(s), et / ou rajouter un (ou plusieurs) 0.
La base hexadécimale consiste à compter sur une base 16, c'est pourquoi au-delà des 10 premiers chiffres on a décidé d'ajouter les 6 premières lettres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Un nombre dans une base donnée s'écrit sous la forme d'additions des puissances successives de cette base. On remarque que la signification des représentations 10, 100, 1000, etc., dépend de la base utilisée : l'écriture « 10 » est égale à dix en base dix, mais deux en base deux ou trois en base trois.
Par exemple, le nombre 27 se décompose en base 2 sous la forme 27=16+8+2+1=1×16+1×8+0×4+1×2+1×1, et son écriture en base 2 est donc 11011.
L'identité d'Euler
Parce qu'elle utilise 3 des opérations fondamentales en arithmétique : l'addition, la multiplication et l'exponentiation. L'identité d'Euler est considérée comme la plus belle formule mathématique.
la base est la face inférieure (supposée horizontale) d'un solide tels qu'un cône ou une pyramide ; les deux bases sont les deux faces opposées d'un solide tels qu'un cylindre ou un prisme.
soit : N = (22 × 2) + (0 × 1) = 44. Pour obtenir l'expression binaire d'un nombre exprimé en décimal, il suffit de diviser successivement ce nombre par 2 jusqu'à ce que le quotient obtenu soit égal à 0.