Un extremum d'une fonction est un maximum ou minimum de la fonction. Un maximum d'une fonction se trouve où la dérivée est nulle et la dérivée seconde est strictement négative. Un minimum d'une fonction se trouve où la dérivée est nulle et la dérivée seconde est strictement positive.
Une fonction f définie dans un sous-ensemble E de nombres réels admet un maximum M en un point a de E si M = f(a) et si, quel que soit x de E, f(x) est inférieur ou égal à f(a). On dit alors que M est le maximum de l'ensemble des images de f.
On dit qu'une fonction f admet un maximum M en x_0 sur un intervalle I si et seulement si pour tout x qui appartient à I, on a M = f(x_0), avec x_0 \in I, et (f(x) \leq f(x_0) = M. L'existence d'un maximum n'est pas garantie. On prend I = \mathbb{R} et f la fonction carré.
Le maximum est la valeur de f la plus grande sur les ordonnées. Le minimum est la valeur de f la plus petite sur les ordonnées.
L'extremum d'une fonction polynôme de la forme f(x)= ax² + bx + c est atteint lorsque x= −b 2a . Si a est positif alors f ( −b 2a ) correspond à la valeur minimale de la fonction, si a est négatif, cela correspond au maximum de la fonction.
Extremum - Points clés
Pour trouver le maximum ou le minimum d'une fonction, il faut : déterminer la dérivée de la fonction f ′ ( x ) = 0 ; résoudre l'équation f ′ ( x ) = 0 ; déterminer si le point trouvé est un minimum ou un maximum.
Soit f:E→R f : E → R une fonction définie sur un ensemble E et soit a∈E a ∈ E . On dit que f admet un maximum en a si, pour tout x∈E x ∈ E , f(x)≤f(a) f ( x ) ≤ f ( a ) . On dit que f admet un minimum en a si, pour tout x∈E x ∈ E , f(x)≥f(a) f ( x ) ≥ f ( a ) .
Le maximum de deux nombres, c'est leur somme PLUS la valeur absolue de leur différence, le tout divisé par 2.
Le maximum M de f sur I est la plus grande valeur de f(x) pour x parcourant I. On a alors pour tout x de I, f(x) ≤ M. Le minimum de f sur I est la plus petite valeur de f(x) pour x parcourant I.
Soient f une fonction définie sur un espace topologique E et a un point de E. On dit que f atteint en a un maximum local s'il existe un voisinage V de a tel que pour tout élément x de V, on ait f(x) ≤ f(a). On dit alors que f(a) est un « maximum local » de f sur E et que a est un point de maximum local de f.
M est le maximum de la fonction f sur l'intervalle I lorsque, pour tout réel x de I, on démontre que : M – f (x) est positif ou nul, et nul en une valeur de I. m est le minimum de la fonction f sur l'intervalle I lorsque, pour tout réel x de I, on démontre que : f (x) – m est positif ou nul, et nul en une valeur de I.
f est strictement croissante si et seulement si pour tout x ∈ I, f ' (x) ≥ 0 et de plus l'ensemble des points où la dérivée f ' s'annule est d'intérieur vide (c'est-à-dire qu'il ne contient aucun intervalle non trivial).
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
Le maximum d'un ensemble D est le plus grand élément de D, s'il existe. Propriété : -Si le maximum de D existe, alors il est égal à la borne supérieure. -Si la borne supérieure de D est un élément de D, alors c'est son max.
Une fonction f définie dans un sous-ensemble E de nombres réels admet un minimum m en un point a de E si m = f(a) et si, quel que soit x de E, f(x) est supérieur ou égal à f(a). On dit alors que m est le minimum de l'ensemble des images de f.
La limite d'une fonction, c'est en gros « vers quoi tend » la fonction. Le plus simple est de prendre un exemple : la fonction inverse : On voit bien que quand x tend vers +∞, la fonction « tend » vers 0, c'est-à-dire qu'elle se rapproche de plus en plus de 0 sans jamais la toucher.
Alors la fonction admet un maximum M (ou un minimum m). Il y a une deuxième méthode : Si f(M) - f(x) > 0, alors M est le maximum de f. Si f(m) - f(x) < 0, alors m est le minimum de f.
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Ex. : 30, 790, 9 850, 213 850, etc. Pour trouver les multiples de 3, il faut additionner tous les chiffres composant le nombre : si le total est égal à 3, 6 ou 9, c'est bien un multiple de 3. Ex. : si l'on additionne le 1 et le 2 du nombre 12, on trouve 3 (1 + 2 = 3) ; donc 12 est un multiple de 3 (3 × 4 = 12).
Cette méthode consiste à diviser simultanément les nombres dont on cherche le PPCM par des diviseurs premiers. Le PPCM sera alors le produit de ces diviseurs premiers.
Les multiples d'un nombre
L'ensemble des multiples d'un nombre est le résultat de la multiplication de ce nombre par chacun des nombres entiers (Z ). 12 est un multiple de 3 , car 3×4=12 3 × 4 = 12 . L'ensemble des multiples de 3 est obtenu en multipliant 3 par chacun des éléments de Z .
Pour dresser le tableau de variations d'une fonction, il faut calculer la dérivée, étudier le signe de celle-ci, et compléter les valeurs aux extrémités de chacune des flèches placées, en faisant attention aux éventuelles valeurs interdites sur l'intervalle d'étude.
Une fonction est dite croissante si elle ne fait que croître sur un intervalle donné, c'est-à-dire que pour chaque paire de points de cet intervalle, le point de gauche a une valeur inférieure ou égale au point de droite. Une fonction est décroissante si elle ne fait que décroître sur cet intervalle.
On appelle maximum absolu la plus grande des valeurs d'une fonction et minimum absolu la plus petite de ces valeurs.