Si le nombre se termine par un zéro, le dernier zéro est remplacé par un : par ex. 100 (4) + 1 (1) = 101 (5).
Pour réaliser cette conversion il suffit d'effectuer une succession de division par 2. Exemple : On souhaite convertir la valeur décimale 149(10) en un nombre binaire. La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Chiffres utilisés dans une base et symboles
Une base b utilise b chiffres. Pour les bases jusqu'à dix inclus, on utilise les chiffres 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. + 25 × 60 + 12 ; ce nombre est composé de trois chiffres : 1, 25 et 12.
En informatique les bases binaire, octale et hexadécimale sont fréquemment utilisées. Toutes ces bases étant des puissances de deux, 21, 23 et 24, il y a des conversions particulièrement simples. (0)8 = (000)2, (1)8 = (001)2,...,(6)8 = (110)2 ;(7)8 = (111)2 .
Pour écrire un nombre en base 16, il faut disposer d'un caractère pour chacun des entiers de 0 à 15. Or, on ne dispose pas d'assez de chiffres pour écrire les 16 valeurs de la base 16. On complète donc les chiffres de 0 à 9 par les six premières lettres de l'alphabet : A, B, C, D, E, F.
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers.
1) Mettre le reste de la division par 2 du nombre en cours dans une liste L. 2) Le nombre suivant est le quotient de la division par 2 du précédent. 3) Répéter ces deux opérations tant que n est plus grand que 0. 4) Imprimer la liste dans l'ordre inverse.
Par exemple, le nombre 27 se décompose en base 2 sous la forme 27=16+8+2+1=1×16+1×8+0×4+1×2+1×1, et son écriture en base 2 est donc 11011.
En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Il suffit de découper le nombre en paquet de 3 ou 4 bits(a partir de la droite) et de remplacer par la valeur correspondante. Les paquets sont de 3 bit pour l'octal et 4bits pour l'hexadécimal. L'hexadécimal et particulièrement pratique car avec 4 lettres un code exactement 4 bits soit un octet.
Quel est en base 5 le nombre qui précède 1200 en base 5 et qui suit 4124. Pour moi, 1200, si on fait le parallèle avec les représentations utilisées en base 10, c'est 1 caisse, 2 valises, 0 boite et 0 unité.
la base est la face inférieure (supposée horizontale) d'un solide tels qu'un cône ou une pyramide ; les deux bases sont les deux faces opposées d'un solide tels qu'un cylindre ou un prisme.
Le grand avantage du système hexadécimal réside dans son format compact, car la base 16 signifie qu'il faut moins de chiffres pour représenter un nombre donné qu'en format binaire ou décimal. En outre, il est relativement simple et rapide de convertir les chiffres hexadécimaux en chiffres binaires et inversement.