Pour savoir dans quelle colonne on doit placer le chiffre des unités et la virgule, il suffit de regarder quelle est l'unité de mesure du nombre. Pour convertir un nombre décimal, il faut déplacer la virgule d'un (ou plusieurs) rang(s), et / ou rajouter un (ou plusieurs) 0.
L'algorithme de conversion de la base 10 à la base 16 est très proche de celui de la conversion de décimal à binaire. Prenons un exemple : 5869=366×16+13 5869 = 366 × 16 + 13 reste = 13. 366=22×16+14 366 = 22 × 16 + 14 reste = 14.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes. Le bit de poids fort correspondant au reste obtenu à l'ultime étape de la division.
La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
Les nombres binaires étant de plus en plus longs, il a fallu introduire une nouvelle base : la base hexadécimale. La base hexadécimale consiste à compter sur une base 16, c'est pourquoi au-delà des 10 premiers chiffres on a décidé d'ajouter les 6 premières lettres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
1. Si l'unité d'arrivée est plus petite que l'unité de départ, on ajoute des zéros à droite du nombre. 2. Si elle est plus grande, on place une virgule juste après l'unité souhaitée et on ajoute des zéros à sa droite jusqu'à arriver au nombre à convertir.
Pour convertir un nombre entier en nombre décimal, vous devez décider du résultat à un certain nombre de décimales après la virgule et simplement ajouter une décimale et le nombre de zéros requis à droite du nombre entier. Par exemple : Convertir 5 en décimal à la centième place. Sachant que le nombre entier est 5.
(0)16 = (0000)2 ; (1)16 = (0001)2 ; (2)16 = (0010)2 ; (3)16 = (0011)2 ; (4)16 = (0100)2 ; (5)16 = (0101)2 ; (6)16 = (0110)2 ; (7)16 = (0111)2 ; (8)16 = (1000)2 ; (9)16 = (1001)2 ; (A)16 = (1010)2 ; (B)16 = (1011)2 ; (C)16 = (1100)2 ; (D)16 = (1101)2 ; (E)16 = (1110)2 ; (F)16 = (1111)2 .
Si le nombre se termine par un zéro, le dernier zéro est remplacé par un : par ex. 100 (4) + 1 (1) = 101 (5). Les chiffres de base 10 sont utilisés entre parenthèses pour la comparaison.
Les Chiffres et les Nombres en Binaire de 0 à 1000 – : 0=0 en binaire, 1=1, 2=10, 3=11, 4=100, 5=101, 6=110, 7=111, 8=1000, 9=1001, 10=1010, …, 20=1 0100, …, 30=1 1110, …, 40=10 1000, …, 64=100 0000, …, 100=110 0100, 101=110 0101, …, 128=100 0000, …, 256=1 000 0000, …, 500=1 1111 0100, …, 512=10 0000 0000, …, 1000=11 ...
le compte sur les dix doigts est très intuitif ainsi que cela a été mentionné ci-dessus ; son ordre de grandeur est satisfaisant, car il permet de réduire considérablement la longueur d'un grand nombre par rapport à la base 2, tout en conservant des tableaux d'additions et de multiplications mémorisables.
Pour un octet, le plus petit nombre est 0 (représenté par huit zéros 00000000), et le plus grand est 255 (représenté par huit chiffres « un » 11111111), ce qui représente 256 possibilités de valeurs différentes.
En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).