Soient A et B deux points du plan P , α et β deux réels tels que α+β = 0 . Il existe un unique point G tel que : α −−→ GA +β −−→ GB = −→ 0 . Ce point est appelé barycentre des deux points pondérés (A, α) et (B , β) .
Soit A,B,P A , B , P trois points distincts du plan tels que P soit sur le segment [AB] . Écrire P comme barycentre de A et B avec des coefficients s'écrivant en fonction des distances PA , PB . Il suffit de remarquer que −−→PB=PBAB−−→AB P B → = P B A B A B → et que −−→PA=−PAAB−−→AB.
Soit un repère de l'espace. Soient A, B et C trois points de l'espace de coordonnées respectives (xA, yA, zA), (xB, yB, zB) et (xC, yC, zC) et soient a, b et c trois nombres réels tels que a+b+c ≠ 0. Soit G le barycentre de (A, a), (B, b) et (C, c) et soient (xG, yA, zA) les coordonnées de G dans le repère .
D'où la propriété : ►Si G bar ( A ; a ) ( B ; b) alors A, B et G sont alignés. Réciproquement : tout point de la droite (AB) peut s'écrire comme barycentre de A et de B. * Soit G bar ( A ; a ) ( B ; b) ( C ; c ).
L'existence et l'unicité de ce point se prouvent aisément en utilisant la relation de Chasles. , le barycentre des points (A1, … , An) affectés des coefficients (a1, … , an). Dans le cas particulier où a1 = a2 = … = an, on parle d'isobarycentre.
Les coordonnées X et Y du barycentre s'obtiennent en sommant les coordonnées pondérées de chaque site et en les divisant par la somme des pondérations. Autrement dit : pour chaque site, prendre ses coordonnées x et y, les multiplier par leur poids relatif, en faire la somme puis diviser par le total des poids relatifs.
Si a+b = 0, le barycentre des points pondérés (A,a)(B,b) est le point G tel que a −→ GA+b −→ GB = −→ 0 . Cette propriété est utilisée pour construire graphiquement le barycentre de deux points. Exemples : A et B sont deux points distants de 3 cm. G1 barycentre de (A,1)(B,2) ⇔ −−→ AG1 = 2 1+2 −→ AB = 2 3 −→ AB.
Un point pondéré est un couple (A, a) où A est un point du plan ou de l'espace et a est un nombre réel quelconque. Un point pondéré est aussi appelé point massif ou point coefficient. Le nombre réel a est appelé masse ou poids ou coefficient du point A.
Pour montrer que les points P ,Q et R sont alignés, il suffit de montrer, par exemple, que Q est le barycentre de P et de R avec des coefficients à déterminer. Le point P est donc le barycentre de (B , 1) et (C , -2). Par ailleurs, R est le milieu du segment [AB] donc . (Q est donc le barycentre de (A , 1) et (C , 2)).
Plusieurs droites sont dites concourantes si elles se coupent en un même point. Dire que 3 droites sont concourantes signifie qu'elles se coupent en un même point, et non qu'elles se coupent 2 à 2!
Le centre de gravité est donc le « centre géométrique », c'est-à-dire le barycentre en considérant que tous les points de l'objet ont la même pondération (isobarycentre).
1) Dans un repère, représenter le nuage de points (xi ; yi). 2) Déterminer les coordonnées du point moyen G du nuage de points. y = (40 + 55 + 55 + 70 + 75 + 95) : 6 = 65. Le point moyen G du nuage de points a pour coordonnées (13 ; 65).
(BH) coupe (AC) en Q, (CH) coupe (AB) en P . Alors (BC) et (PQ) sont parallèles. Puisque A,I,H sont distincts et alignés, il existe un réel k nbon nul tel que vectHI = k vect HA. Déduisez-en que H est le barycentre de (A,-2k), (B,1) (C,1).
Remarques : ① Le barycentre deux points est sur le segment [AB] lorsque les coefficients sont de même signe. ② Le barycentre de deux points est plus près du point dont le coefficient en valeur absolue est le plus grand.
Il est déterminé pour que la somme des vecteurs reliant tous les points à G, affectés du coefficient du point associé, soit nulle. Ce barycentre est le centre de gravité de l'ensemble des points.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
3 points A, B, C sont alignés ⇔ →AB et →AC sont colinéaires. Dans la pratique, pour savoir si A, B, C sont alignés: on regarde si →AB et →AC sont colinéaires, à l'aide de la méthode "vecteurs colinéaires". Si →AB et →AC sont colinéaires, alors les points A, B, C sont alignés.
Pour calculer une moyenne pondérée, vous devrez d'abord multiplier la valeur par son coefficient, puis additionner les différents résultats obtenus que vous diviserez enfin par la somme des coefficients.
Ainsi, si votre appartement mesure par exemple 50m² mais possède une terrasse de 8m², vous pouvez le louer sur la base de 50 + 0,5x8 = 54 m² - où 0,5 est le coefficient de pondération des surfaces annexes.
Le centre de gravité est le point où se concentrent les forces de gravité ou de pesanteur. Il est déterminé par l'intersection des plans qui divisent un corps en deux parties de masse équivalente.
Le barycentre est une méthode de calcul beaucoup utilisée dans les domaines de la logistique et du transport pour déterminer l'emplacement idéal d'un dépôt logistique, d'une usine, d'un centre de distribution… Mais il peut être utile dans d'autres domaines que nous vous dévoilerons plus loin dans cet article.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Re: barycentre
Il faut calculer le barycentre G sur excel par exemple et rajouter le point sur la table correspondante dans Mapinfo, manuellement. Le barycentre = centre de gravité = point moyen. Il a donc pour X la moyenne des X de ton nuage de points et pour Y la moyenne des Y.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.