Deux nombres sont inverses lorsque leur produit est égal à 1.
Deux nombres sont opposés lorsqu'ils ont la même distance à zéro et des signes contraires.
L'inverse d'un nombre s'obtient en mettant ce nombre sur 1, en faisant donc "1 ÷ (nombre)". Vous le voyez, l'inverse d'un entier est une fraction qu'il faut laisser telle quelle. Il n'y a pas à faire de calcul pour obtenir un nombre décimal. Ainsi, l'inverse de 2 est : 1 ÷ 2 = 1/2.
Inverse d'une fraction
Soit a et b deux nombres entiers d'une fraction avec a étant le numérateur et b le dénominateur. L'inverse de la fraction a/b est égal à b/a. On a par conséquent échangé le numérateur et le dénominateur.
Exemples. L'inverse de 2 est 12 parce que 2×12=1.
Exemples. L'élément opposé de 8 est –8, car : 8 + (–8) = 0. L'élément opposé de –6,5 est 6,5, car : 6,5 + (–6,5) = 0.
Par exemple : l'opposé de 7 est égal à –7 car 7 + (–7) = 0. l'opposé de -0,3 est 0,3 car –0,3 + 0,3 = 0.
Fonction inverse - Points clés
La fonction inverse a pour formule f ( x ) = 1 x et son ensemble de définition est R ∖ { 0 } . La dérivée de la fonction inverse est f ( x ) = − 1 x 2 . Elle est donc décroissante sur son ensemble de définition. La courbe représentative de la fonction inverse est une hyperbole.
Deux nombres sont inverses l' un de l' autre lorsque leur produit est égal à 1. Remarque : Seul 0 n' a pas d' inverse. D' après la règle des signes; deux nombres inverses sont toujours du même signe alors que deux nombres opposés et non nuls sont de signes contraires.
En mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x−1 ou 1x.
Propriétés. Le produit d'un nombre et de son inverse est toujours égal à 1.5 × 0,2 = 1. On peut en déduire que l'inverse de 5 est 0,2 et que l'inverse de 0,2 est 5. Un nombre et son inverse ont le même signe.
L'opposé d'un nombre x est en fait le nombre x mais avec un signe différent de celui de x. Si x positif, son opposé est négatif et si x négatif, son opposé est positif.
Propriété : Deux nombres sont inverses l'un de l'autre si leur produit est égal à 1.
Deux nombres entiers sont dits premiers entre eux lorsqu'il n'admette aucun diviseur commun, sinon l'unité. Par exemple 5 et 12 sont premiers entre eux, mais pas 12 et 15 qui admettent 3 comme diviseur commun.
Paire de nombres x et y qui vérifient la relation x + y = 0. L'opposé du nombre 0 est le nombre 0. Deux nombres opposés sont deux nombres de même valeur absolue et de signes contraires.
Si f(a)=b, alors f ⁻¹(b)=a, autrement dit si a est l'antécédent de b par la fonction f, alors a est l'image de b par la fonction réciproque de f.
Inverser une fraction
Le numérateur devient le dénominateur, tandis que le dénominateur devient le numérateur. 3/7 est l'inverse de la fraction 7/3.
Une fonction 𝑓 est dite inversible si elle est bijective (c'est-à-dire, elle est à la fois injective et surjective), c'est-à-dire, si chaque antécédent a une image unique et que tout élément de l'ensemble d'arrivée est associé à un élément du domaine de définition.
La fonction inverse est strictement décroissante sur chacun des intervalles où elle est définie.
Parité La fonction inverse est impaire. La représentation graphique de la fonction inverse admet l'origine du repère pour centre de symétrie.
Remarques : • 0 n'a pas d'inverse • deux nombres inverses sont soit tous les deux positifs, soit tous les deux négatifs.
L'inverse d'un nombre relatif non nul a est le nombre qui multiplié par a donne 1. 5×0,2=1, donc l'inverse de 5 est 0,2. (−100)×(−0,01)=1, donc l'inverse de -100 est -0,01.
Dire que deux nombres relatifs sont opposés signifie : qu'ils ont des signes contraires ; qu'ils ont la même distance à zéro ; et que leur somme est égale à zéro.