Propriété (E2a) Si deux triangles ont deux à deux un côté de même longueur compris entre deux angles de même mesure alors ils sont égaux. Propriété (E2b) Si deux triangles ont deux à deux un angle de même mesure compris entre deux côtés de même longueur alors ils sont égaux.
Si deux triangles ont leurs côtés deux à deux de même longueur, alors ces deux triangles sont égaux. Si deux triangles ont un angle de même mesure compris entre des côtés deux à deux de même longueur, alors ces deux triangles sont égaux.
Propriétés du parallélogramme
Le centre du parallélogramme est le centre de symétrie. Les côtés opposés sont parallèles. Les côtés opposés sont de même longueur. Les angles opposés sont de même mesure.
Si les diagonales d'un quadrilatère ont le même milieu, alors ce quadrilatère est un parallélogramme. Si les cotés opposés d'un quadrilatère non croisé sont de même longueur deux à deux,alors ce quadrilatère est un parallélogramme.
On peut dire que ABCD est un parallélogramme car ses diagonales [AC] et [BD] ont le même milieu I. De plus, ABCD est un rectangle car il a un angle droit en B.
Les côtés opposés [AB] et [CD] ainsi que [AD] et [BC] sont parallèles donc ABCD est un parallélogramme. Si un quadrilatère a deux côtés opposés parallèles et de même longueur alors c'est un parallélogramme.
Définition Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. Propriété (P1) Si un quadrilatère est un parallélogramme alors ses côtés opposés ont la même longueur. Propriété (P2) Si un quadrilatère est un parallélogramme alors ses diagonales se coupent en leur milieu.
Propriétés : Si un quadrilatère est un parallélogramme alors il possède un centre de symétrie. Si un quadrilatère est un parallélogramme alors ses côtés opposés ont la même longueur. Si un quadrilatère est un parallélogramme alors ses côtés opposés sont parallèles deux à deux.
Un parallélogramme possède des diagonales de même milieu mais pas nécessairement de même longueur. Si un quadrilatère est un parallélogramme alors ses côtés opposés ont la même longueur. Si un quadrilatère a ses côtés opposés de même longueur alors c'est un parallélogramme.
Lorsqu'on nomme un triangle isocèle, on précise généralement son sommet principal. Grâce à cette information, il est possible d'identifier les 2 côtés de même longueur. Le sommet commun aux 2 côtés de même longueur est le sommet B. On dit que le triangle ABC est isocèle en B.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
On applique le théorème de Pythagore dans le triangle A B C ABC ABC rectangle en C C C. Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit : A B 2 = A C 2 + B C 2 AB^2=AC^2+BC^2 AB2=AC2+BC2.
On dit aussi que les triangles sont « de même forme ». Lorsque deux triangles sont semblables : un angle d'un triangle et l'angle de même mesure de l'autre triangle sont dits homologues ; les côtés opposés de deux angles homologues sont aussi dits homologues.
Dans deux triangles semblables, les côtés opposés à des angles égaux sont appelés « côtés homologues ». Propriété : Si deux triangles sont semblables alors les longueurs des côtés de l'un sont proportionnelles aux longueurs des côtés de l'autre.
Lorsque deux triangles sont égaux, deux angles, sommets ou côtés superposables sont dits homologues.
L'aire d'un parallélogramme est égale à : côté × hauteur.
Si un quadrilatère est un parallélogramme alors ses côtés opposés sont parallèles. b. Le rectangle ABCD a ses côtés opposés parallèles, c'est donc un parallélogramme ; son centre de symétrie est donc le point O milieu des diagonales.
- Si un parallélogramme a un angle droit et des diagonales perpendiculaires alors c'est un carré. - Si un parallélogramme a des diagonales de même longueur et deux côtés consécutifs de même longueur alors c'est un carré. - Si un parallélogramme a des diagonales de même longueur et perpendiculaires alors c'est un carré.
Définition : Un losange est un quadrilatère qui a ses quatre côtés de même longueurs. Propriétés : Si un parallélogramme a deux côtés consécutifs de la même longueur, alors c'est un losange. Si un parallélogramme a ses diagonales perpendiculaires, alors c'est un losange.
Si deux droites parallèles coupées par une sécantes forment deux angles correspondants, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles correspondants de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.
Rectangles, losanges et carrés sont des parallélogrammes particuliers, donc ils possèdent les propriétés du parallélogramme, à savoir : - les côtés opposés sont parallèles et de même longueur, - les angles opposés sont de même mesure, - les diagonales se coupent en leur milieu.
Déterminer si c'est un trapèze
Un quadrilatère non croisé est un trapèze si et seulement si deux de ses côtés sont parallèles. \left(AB\right) et \left(CD\right) semblent être parallèles. Le quadrilatère ABCD semble donc être un trapèze.
Si un quadrilatère a 4 côtés de même longueur, alors ce quadrilatère est un losange. ABCD est un parallélogramme et AB = BC. Ses côtés opposés sont donc de même longueur. Ainsi, AB = DC et BC = AD.