De même, en appliquant la formule de distributivité simple deux fois, on a : (a + b)(c + d) = a × c + a × d + b × c + b × d = ac + ad + bc + bd pour tous les nombres a, b, c et d.
Le signe de la multiplication entre 2 parenthèses n'est pas obligatoire. Lorsque 2 parenthèses sont collées ensemble, on développe l'expression en multipliant: Le 1er terme de la 1ère parenthèse avec chaque terme de la 2ème parenthèse. Le 2ème terme de la 1ère parenthèse avec chaque terme de la 2ème parenthèse.
Lorsque l'on reconnait un facteur commun dans une somme de termes, on peut le factoriser. Le facteur commun est ici $(x + 2)$. On met donc $(x +2)$ en facteur, en ne l'écrivant qu'une fois, puis dans le second facteur on recopie les facteur qui multipliait $(x + 2)$ ainsi que le signe entre les deux termes.
On a donc : k × (a + b) = k × a + k × b. D'après ce qui précède, et en généralisant à la soustraction, on obtient les formules de distributivité suivantes : k × (a + b) = k × a + k × b ; écriture simplifiée : k(a + b) = ka + kb.
Développer une expression consiste à l'écrire sous la forme d'une somme ou d'une soustraction. Cela revient à transformer une multiplication (ou un produit) de plusieurs termes semblables en une opération de sorte que l'on obtienne des formules de type : k x (a + b) = k x a + k x b.
Les identités remarquables sont des développements particuliers d'expressions. On prendra a et b des nombres quelconques. (a + b)2 = (a + b)(a + b) = a2 + 2ab + b2. Exemple : (5x + 1)2 = (5x)2 + 2 × (5x) × 1 + 12 = 25x2 + 10x.
Développer, c'est transformer un produit en somme algébrique. Réduire une somme algébrique, c'est l'écrire avec le moins de termes possibles. Factoriser, c'est transformer une somme algébrique en produit.
En mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ».
Règle. Pour passer de la forme factorisée à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de degré 2 sous la forme factorisée: f(x)=4(x−2)(x+7) f ( x ) = 4 ( x − 2 ) ( x + 7 ) .
La règle mathématique qui permet de décomposer une multiplication s'appelle la distributivité. Voici cette règle : on ne change pas le résultat d'une multiplication si on réécrit l'un des facteurs sous la forme de la somme de deux nombres.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
La double distributivité permet de développer un produit de deux sommes algébriques. Soient a, b, c et d des nombres quelconques. On cherche à développer (a+b)(c+d), où a, b, c et d sont des nombres quelconques.
Développer un produit, c'est l'écrire sous forme d'une somme ou d'une différence. Réduire une expression littérale, c'est l'écrire avec le moins de termes possibles. Factoriser une somme (ou une différence) c'est l'écrire sous forme d'un produit.
La multiplication est ainsi distribuée au sein de la parenthèse, c'est ce qu'on appelle la distributivité simple. La distributivité simple consiste à distribuer la multiplication à chaque terme de la parenthèse. Le signe entre les deux multiplications (+) est le même que le signe dans la parenthèse (+).
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
On utilise la factorisation avec les identités remarquables lorsque l'on ne peut repérer aucun facteur commun dans l'expression littérale. Les identités remarquables sont utilisées pour le développement mathématique d'expressions numériques. Mais on les utilise également à l'envers pour factoriser.
Le nombre trouvé doit être le plus proche possible du nombre composé par le ou les premiers chiffres du dividende. On place ce chiffre au quotient et on le multiplie par le diviseur. On soustrait le produit obtenu à la partie du dividende correspondante.
Règles de priorité
Pour calculer une expression numérique sans parenthèses, on effectue les calculs de la gauche vers la droite, en commençant par les multiplications et les divisions qui ont priorité sur les additions et les soustractions.
Pour transformer une addition répétée en multiplication, j'observe les nombres à additionner. S'ils sont identiques, je compte le nombre de fois où ce même nombre apparaît. 12+12+12+12= ? → Le nombre 12 apparaît 4 fois.
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Développer une expression, c'est transformer un produit en une somme ou en une différence, en appliquant la règle de distributivité.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Simplifier une fraction, c'est l'écrire avec un numérateur et un dénominateur plus petits. En pratique, cela revient à diviser le numérateur et le dénominateur par un même nombre. Simplifier . 15 et 75 sont divisibles par 5 car leurs chiffres des unités est 5.