Une fonction est une relation qui, à chaque valeur de la variable x, fait correspondre au plus une (0 ou 1) valeur de y. Pour exprimer que y dépend de x, on écrit : y = f(x).
On désigne souvent les fonctions par les lettres f, g ou h. On écrit f : x → ax. Cela signifie : f est la fonction linéaire qui, à tout nombre x, associe le nombre ax, appelé image de x par la fonction f.
Une fonction f est un procédé qui à un nombre x associe un nombre noté f(x). On note : f : x | f(x) on lit : la fonction f qui, à un nombre x, associe le nombre f(x). Le nombre f(x) est appelé image de x par la fonction f. Le nombre x est un antécédent de f(x) par la fonction f.
domf={x∈R|f(x)∈R}. Restrictions pour déterminer le domaine d'une fonction algébrique : Si la formule contient un dénominateur, celui-ci ne doit pas être nul. Ainsi, si f est une fraction algébrique P(x)Q(x), alors domf={x∈R|Q(x)≠0}.
Définitions : Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
Il existe plusieurs types de fonctions. On travaillera ici sur les fonctions affines, les fonctions polynômes du second degré et les fonctions homographiques.
Définition : Signe d'une fonction
Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction ? ( ? ) sur un intervalle ? , le signe est positif si ? ( ? ) > 0 pour tout ? dans ? , le signe est négatif si ? ( ? ) < 0 pour tout ? dans ? .
L'image d'une fonction f correspond à l'ensemble des valeurs que peut prendre la variable dépendante, généralement y . Par abus de langage, il est possible de confondre le concept d'image et de codomaine en prétendant que ce sont des synonymes.
La correspondance qui à tout nombre positif fait correspondre les deux nombres dont il est le carré n'est pas une fonction. En effet, il n'y a pas unicité. Par exemple 4 est le carré de 2 et - 2. L'ensemble de définition d'une fonction est l'ensemble des nombres réels pour lesquels on peut calculer une unique image.
Une fonction est un processus, une machine mathématique, qui à un nombre donné, fait correspondre un autre nombre : son image. Vocabulaire : f ( x ) f(x) f(x) est l'image de x par la fonction f. x est un antécédent de f ( x ) f(x) f(x) par la fonction f.
Une fonction est une relation mathématique qui prend une valeur et lui en associe une autre. On note souvent f la fonction et x le nombre de départ. On note f(x) le nombre d'arrivée. Par exemple, fonction f(x) = 2x + 3 est une fonction qui a tout x associe 2x+3.
2) Exprimer en fonction de x l'aire du rectangle. Les dimensions du rectangle sont donc : x et 5 – x. En effet : P = 2x + 2(5 – x) = 10 cm.
Une fonction affine est toujours associée à une formule de type f(x) = ax + b, pour déterminer cette formule il faut donc trouver la valeur de "a" et celle "b".
Principe. Pour calculer l'image de f (par exemple), c'est à dir calculer f(2), on remplace x par 2 dasn l'expression de f(x), tout simplement.
On pose pour tout x de R , u(x) = x et v(x) = x2 . On a ainsi : f (x) = u(x) + v(x).
On peut retenir l'ordre des signes grâce au raisonnement suivant : si le coefficient directeur a est positif, la fonction est croissante donc d'abord négative puis positive. si le coefficient directeur a est négatif, la fonction est décroissante donc d'abord positive puis négative.
On place les valeurs pour lesquelles f change de sens de variation dans la première ligne du tableau de variations. On trace une flèche qui monte dans la deuxième ligne du tableau lorsque f est croissante et une flèche qui descend lorsque f est décroissante.
Dresser un tableau de variation à partir d'une courbe
Les reporter sur la première ligne du tableau. Faites ensuite correspondre dans la deuxième ligne une flèche montante pour chaque intervalle où la fonction est croissante, et une flèche descendante lorsqu'elle est décroissante.
La fonction d'un mot ou d'un groupe de mots est le rôle qu'il occupe par rapport à un autre mot ou groupe de mots. Ainsi on dira d'un mot qu'il est le sujet du verbe x, le complément du nom y, etc.
La représentation graphique d'une fonction, c'est l'ensemble des points (x, y). On représente la variable indépendante, x, en abscisses et la variable dépendante, y, en ordonnées. Équation ou expression algébrique On note par y=f(x) et elle est appelée équation de la fonction.
f est une fonction linéaire donc son expression algébrique est f(x) = ax où a est le coefficient de cette fonction linéaire.