La courbe représentative d'une fonction f est l'ensemble des points M\left(x;y\right) tels que f\left(x\right) =y et x\in D_f. On peut en tracer une allure si l'on connaît une expression de la fonction. On considère la fonction f définie, pour tout réel x, par f\left(x\right) = 2x^2-x+1.
La position relative entre deux courbes étudie les intervalles sur lesquelles une des courbes est supérieure à l'autre. Pour étudier la position relative entre C f C_{f} Cf et T T T, il faut étudier le signe de f ( x ) − y f\left(x\right)-y f(x)−y.
Pour déterminer si cette représentation graphique correspond à une fonction, on ajoute une droite verticale sur le graphique et on vérifie le nombre de points d'intersection avec la courbe représentative. S'il y a plus d'un point d'intersection, la représentation graphique ne correspond pas à une fonction.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
La tendance générale : Pour cela, reliez virtuellement ( ou à l'aide de pointillés discrets) les 2 extrémités de la courbe. Si votre regard monte, elle est CROISSANTE. A l'inverse, si votre regard descend, elle est DECROISSANTE. Enfin, si les deux extrémités sont identiques, elle est STABLE.
1- Lire les informations apportées par les axes. 2- Repérer sur la courbe les points remarquables (maximum, minimum, point d'inflexion). 3- Découper la courbe en plusieurs parties. 4- Justifier chaque partie par des données chiffrées qui indiquent comment évolue le paramètre mesuré par rapport au paramètre qui a varié.
Dans un graphique dans les marges, observez le nuage de points et les graphiques dans les marges à la recherche de valeurs aberrantes. Sur un nuage de points, les points isolés indiquent des valeurs aberrantes. Sur un histogramme, des barres isolées aux extrémités indiquent des valeurs aberrantes.
m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
L'étude d'une fonction f est une composante incontournable d'un problème. Selon l'énoncé, le nombre de questions intermédiaires peut varier, c'est pourquoi il faut être capable de dérouler par soi-même toutes les étapes de l'étude. L'objectif est de dresser le tableau de variations complet d'une fonction.
Une fonction à 2 variables est un objet qui à tout couple de nombres réels (x, y) associe au plus un nombre réel. Si f est une telle fonction, on note f : R × R → R. Si f associe un nombre à (x, y), on note f(x, y) ce nombre. On dit qu'on peut évaluer f en (x, y) et f(x, y) est la valeur de f en (x, y).
Bilan : pourquoi étudier les fonctions ? - pour mettre en évidence la dépendance entre des quantités - pour décrire la dépendance entre des quantités - pour déterminer une quantité à partir d'une autre - pour comparer plusieurs quantités - pour comparer les variations de plusieurs quantités - pour optimiser une ...
La dérivée comme outil pour étudier le sens de variation
La dérivée d'une fonction joue un rôle essentiel dans l'étude du sens de variation. Ainsi: ✅ Si la dérivée est positive, cela signifie que la fonction est croissante dans cet intervalle. ❌ Si la dérivée est négative, cela indique une décroissance.
Tracer l'allure de la courbe
On peut placer sur un repère le sommet de la parabole, ainsi que les points d'intersection avec l'axe des abscisses. On trace alors une allure de la parabole, en respectant le sens de variation de la fonction.
"Pour étudier la position relative de la courbe C_{f} et de la droite D d'équation y=ax+b, on étudie le signe de f\left( x \right)-\left( ax+b \right)." Pour étudier la position relative de C_f et de D, on étudie le signe de f\left(x\right)-\left( x-1 \right) pour tout réel x différent de -1.
Résoudre graphiquement l'équation f (x) = k, c'est trouver les abscisses des points de la courbe qui ont pour ordonnée k. Exemples : Soit f une fonction affine, définie sur , et sa courbe représentative. Résoudre l'équation f(x) = 3 à partir de sa droite représentative ci-dessous.
La méthode de résolution d'une telle inéquation est la suivante. - Etape 1: sur le graphique comportant la courbe représentant la fonction, tracer la droite d'équation y = a (droite horizontale d'abscisse a). - Etape 2: repérer les zones de la courbe situées au-dessus de la droite tracée.
Lorsque la demande augmente, la courbe de demande se déplace vers la droite (droite D2 sur le graphique). Il y a un nouvel équilibre qui se traduit par des quantités échangées plus importantes et un prix plus élevé (les acheteurs sont prêts à dépenser plus pour avoir un produit).
Pour lire un tableau, il faut se repérer verticalement, suivant une colonne, et horizontalement, suivant une ligne. Au croisement de la colonne et de la ligne se trouve la « solution ».
Le diagramme à bandes permet d'établir une comparaison rapide entre des données. La longueur et la largeur des bandes indiquent la valeur des données représentées. Le diagramme circulaire est divisé en secteurs, dont la dimension est pro portionnelle aux valeurs représentées.
Les valeurs de l'axe X doivent être ordonnées de manière chronologique. Les graphiques linéaires, également appelés diagrammes de courbes ou cartes de suivi, sont utiles pour trouver les valeurs aberrantes.
En effet, la manière usuelle de comparer des courbes est de comparer le maximum de la diffé- rence, ou certains points particuliers comme le début ou la fin d'un cycle, mais on perd beaucoup d'informations car cela réduit une courbe à un seul point (particulier certes, mais qui ne capture pas toutes les subtilités).
Graphique circulaire (description des composantes) Graphique à barres (comparaison des éléments et relations, série chronologique, distribution de fréquences) Graphique linéaire (série chronologique, distribution de fréquences)