a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Étudier le signe d'une telle expression revient à étudier séparément le signe des facteurs et puis à appliquer la règle des signes. Cela revient à résoudre les inéquations et . Pour cela, on utilise un tableau de signes. Le produit de deux nombres négatifs est positif.
Exemple : Montrons que la suite (Un) définie par Un = 5n + 3 est arithmétique. Un+1 - Un = [5(n + 1) + 3] - [5n +3]. Un+1 - Un = [5n + 5 + 3] - [5n +3].
− d'une relation qui permet de calculer à partir de chaque terme le terme suivant (On exprime un+1 en fonction de un pour tout entier naturel n). Cette relation est appelée relation de récurrence. Exemple Soit (un) la suite définie par u0 = 2 et pour tout entier naturel n par un+1 = −2un + 3. Calculer u1 et u2.
Une des méthodes les plus couramment utilisées pour déterminer le sens de variation d'une fonction est l'étude du signe de sa dérivée. ➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction.
MÉTHODE 1. –
Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Définition : Signe d'une fonction
Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction 𝑓 ( 𝑥 ) sur un intervalle 𝐼 , le signe est positif si 𝑓 ( 𝑥 ) > 0 pour tout 𝑥 dans 𝐼 , le signe est négatif si 𝑓 ( 𝑥 ) < 0 pour tout 𝑥 dans 𝐼 .
La suite définie par un+1 = 2un avec u0 = 1 est une suite géométrique de raison 2. Les premiers termes de cette suite sont 1 ; 2 ; 4 ; 8 ; 16… Dire qu'une suite de termes non nuls est géométrique signifie que le quotient de deux termes consécutifs quelconques est constant, quel que soit n.
Le un (1) est un chiffre arabe, utilisé notamment pour signifier le nombre un. Le terme « chiffre » désigne ici le signe scriptural utilisé pour écrire des nombres ou des numéros.
Forme explicite : si la suite (un) est géométrique de raison q et de premier terme u0, alors pour tout entier naturel n, un = u0qn. Plus généralement, pour tous entiers naturels n et p, un = up qn−p. si q = 1, alors S = u0 +u1 +···+un = u0 1−qn+1 1−q .
Donner le sens de variation d'une fonction c'est dire si elle est croissante ou décroissante dans un intervalle donné.
1) Etudier le signe de (Un+1) - (Un). - Si (Un+1) - (Un) ≥ 0 alors la suite (Un) est croissante. - Si (Un+1) - (Un) ≤ 0 alors la suite (Un) est décroissante. - Si (Un+1) - (Un) = 0 alors la suite (Un) est constante.
Étudier le sens de variation d'une suite, c'est chercher si cette suite est croissante ou décroissante. Calculer un+1−un. Si pour tout entier naturel n, un+1−un⩾0 alors la suite (un) est croissante. Si pour tout entier naturel n, un+1−un⩽0 alors la suite (un) est décroissante.
Si la forme algébrique est l'expression d'une fonction réelle d'une variable réelle, on dresse un tableau de signes à 2 lignes : une ligne pour la variable, sur laquelle on trouve les bornes de l'ensemble de définition de la fonction, et les valeurs pour lesquelles la fonction change de signe.
Une utilisation courante des tableaux de signes est la résolution d'inéquations. La fiche méthode Inéquation avec quotients décrit la démarche à suivre dans ce cas.
Entre superstition et fascination, le « 7 » est considéré comme le numéro de la chance par excellence.
Habituellement, le chiffre 6 est celui qui est associé à l'idée de l'amour, mais aussi de la beauté et de la famille. Si ce chiffre est associé au 9, c'est un très bon signe, qui peut annoncer une grande nouvelle, telle qu'une naissance, un mariage ou la concrétisation d'un projet à deux.
Selon 44.000 votants sur Internet, le sept est le nombre le plus aimé au monde.
Par exemple, on construit une suite v en disant – v1 = 1 : le terme d'indice 1 de la suite v est 1 ; – pour tout entier n ≥ 1, vn+1 = vn +3 : on construit chaque terme en ajoutant 3 au précédent. Le premier terme de cette suite est v1 = 1, le deuxième est v2 = v1 +3 = 1+3 = 4, le troisième est v3 = v2 +3 = 4+3 = 7 etc.
Comment la définir sous forme explicite ? Une formule explicite d'une suite arithmétique de premier terme u 1 = A et de raison est : pour tout n ≥ 1 , u n = A + B ( n − 1 ) . Donc une formule explicite de la suite est : pour tout n ≥ 1 , a n = 3 + 2 ( n − 1 ) .
On peut trouver la raison en soustrayant un terme de la suite arithmétique au terme suivant. Par exemple, prendre la différence des deux premiers termes nous donne − 3 − 2 = − 5 . Par conséquent, la raison de cette suite arithmétique est − 5 . Comme la raison est négative, cette suite est donc décroissante.
Pour tracer un tableau de signes d'un produit de fonctions affines ( a x + b ) ( c x + d ) (ax+b)(cx+d) (ax+b)(cx+d), la marche à suivre est la suivante: Calculer la valeur qui annule a x + b ax+b ax+b.
Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
On détermine graphiquement le signe de f'\left(x\right) (positif lorsque la courbe est située au-dessus de l'axe des abscisses, négatif sinon). On identifie sur le graphique les abscisses des points d'intersection de la courbe avec l'axe des abscisses.