Comment expliquer ce qu'est une dérivée ?

Interrogée par: Thibault Merle  |  Dernière mise à jour: 27. Mai 2024
Notation: 4.3 sur 5 (32 évaluations)

En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal.

Comment expliquer une dérivée ?

Pour faire simple, le signe de la dérivée permet d'indiquer les variations de la fonction f. C'est ce qui représente la tangente à la fonction. Et la dérivée elle-même représente le coefficient directeur de la tangente à f au point.

Comment interpréter une dérivée ?

La dérivée, 𝑓 ′ ( 𝑥 ) est positive lorsque la courbe est au-dessus de l'axe des 𝑥 , et est négative lorsque la courbe est sous l'axe des 𝑥 . Lorsque 𝑥 ∈ ] 1 ; 5 [ , on a 𝑓 ′ ( 𝑥 ) > 0 , donc la pente de la courbe représentative de 𝑓 ( 𝑥 ) est positive.

Comment exprimer une dérivée ?

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 2a. On a donc défini sur R une fonction, notée f ' dont l'expression est f '(x) = 2x . Cette fonction s'appelle la fonction dérivée de f. Le mot « dérivé » vient du latin « derivare » qui signifiait « détourner un cours d'eau ».

Quelle est l'utilité de la dérivée ?

Lorsqu'une fonction n'est pas linéaire, sa pente peut varier d'un point à l'autre. Il nous faut donc introduire la notion de dérivée qui permet d'obtenir la pente en tout point de ces fonctions non linéaires.

QUEL EST LE PLUS GRAND CROCODILE AYANT EXISTÉ ? - Le sarcosuchus

Trouvé 25 questions connexes

Quelle est la dérivée de zéro ?

Sa dérivée est toujours positive (ou nulle pour x = 0).

Quelle est la différence entre dérivée et différentielle ?

On parle de derivee pour une fonction de R dans R, et differentielle pour une fonction de plusieurs variables. La differentielle d'une fonction par exemple de Rn dans Rm est une application lineaire de Rn dans Rm.

Comment justifier le signe d'une dérivée ?

Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.

Quel est le synonyme du mot dérivé ?

Tirer son origine de quelque chose. Synonyme : découler, émaner, naître, procéder, provenir, se rattacher, résulter, sortir de, venir de.

Qu'est-ce que la dérivée en un point ?

Le nombre dérivé d'une fonction en un point donné est le coefficient directeur de la tangente en ce point. Cela découle de la définition du nombre dérivé. Comme expliqué avant, le taux d'accroissement entre deux points correspond au coefficient directeur de la droite qui passe par ces deux points.

Comment savoir si la dérivée est positive ou négative ?

Si la fonction est croissante (respectivement décroissante) alors la dérivée est positive (respectivement négative).

Quel est le lien entre une fonction et sa dérivée ?

Lorsque sur un intervalle les nombres dérivés sont positifs, c'est qu'à cet endroit-ci la fonction est croissante. Graphiquement, ça se traduit par une courbe qui monte et une tangente qui en fait de même puisque son coefficient directeur est positif. Et inversement sur les intervalles où le nombre dérivé est négatif.

Comment retenir les dérivées ?

Pour la retenir, la meilleur façon à mon avis est de la comparer à la dérivée d'une fonction quelconque. u(x). u(x). Ici x est la variable et on note toujours ( u ( x ) ) ′ = u ′ ( x ) (u(x))' = u'(x) (u(x))′=u′(x).

C'est quoi la dérivation en français ?

La dérivation est un mode de formation qui consiste en l'ajout d'un ou plusieurs préfixes ou suffixes à un radical ou à un mot déjà présent dans la langue, pour former ce que l'on appelle un mot dérivé.

Quel élément de base constitue un mot dérivé ?

Remarques générales : -Un mot dérivé peut être formé de la combinaison de plusieurs préfixes et suffixes : anti- constitution (n) elle-ment. -Certains affixes présentent des variantes de forme, phoniques et ou graphiques, conditionnées par l'environnement phonologique et morphologique de l'affixe.

Quelle est la différence entre un mot dérivé et un mot composé ?

Former un mot par dérivation consiste à ajouter un préfixe et/ou un suffixe à un radical. Former un mot par composition consiste à combiner deux ou plusieurs mots simples.

Quelle est l'origine du mot dérivé ?

Étymologie. Participe passé du verbe dériver.

Quand la dérivée s'annule sans changer de signe ?

Attention, si la dérivée s'annule en un point mais ne change pas signe autour de ce point, il ne s'agit pas d'un extremum. Par exemple, si f(x) = x3 alors f′(x)=2x2 et f′(0) = 0 mais f′ ne change pas de signe et 0 n'est pas un extremum de f. 1.

Quand la dérivée est constante ?

Résumés. Nous étudions plusieurs démonstrations de la caractérisation suivante des fonctions constantes : une fonction, définie sur un intervalle, dérivable est constante si, et seulement si, sa dérivée est nulle.

Quand la dérivée s'annule ?

Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.

Pourquoi utiliser la dérivée seconde ?

La dérivée seconde indique la variation de la pente de la courbe représentative et permet de mesurer la concavité locale de la courbe. Si elle est positive sur un intervalle, la pente augmente, la courbure est vers le haut, la fonction est dite « convexe » sur cet intervalle.

Comment savoir si une fonction est différentiable ?

Si toute dérivée partielle de f existe et est continue sur D on dit que f est de classe C1 sur D et on écrit f 2 C1(D). D un ouvert de Rn, f : D 7! R et x0 2 D. Si f est de classe C1 au voisinage de x0 alors elle est différentiable au point x0.

Quel est le but d'une équation différentielle ?

Une équation différentielle est une équation qui établit un lien entre une fonction et une ou plusieurs de ses dérivées.

Quel est le dérivé de 2x ?

Exemple d'utilisation : pour définie sur , sa fonction dérivée est car la dérivée de x2 est 2x (comme on a 3x2, on multiplie 2x par 3) et la dérivée de x est 1 (que l'on multiplie par -2).