La probabilité d'un événement caractérise la possibilité qu'il se produise. Lorsque nous ne sommes pas certains du résultat d'une expérience, on parle alors de la probabilité que des événements se réalisent—la chance qu'ils ont de se produire.
Pour un évènement, une probabilité est égale au rapport entre le nombre de résultats favorables et le nombre de résultats possibles de l'expérience aléatoire. Le lancer d'un dé à 6 faces est une expérience aléatoire, car tous les résultats possibles sont connus d'avance et ne dépendent que du hasard.
On utilise la formule P(B|A)=P(B∩A)P(A). P ( B | A ) = P ( B ∩ A ) P ( A ) .
Ils permettent de traduire de manière abstraite les comportements ou des quantités mesurées qui peuvent être supposés aléatoires. En fonction du nombre de valeurs possibles pour le phénomène aléatoire étudié, la théorie des probabilités est dite discrète ou continue.
On considère un événement comme étant impossible tout événement qui ne se réalisera jamais. De ce fait, sa probabilité est nulle. Toujours en prenant l'exemple du lancer d'un dé équilibré à 6 faces, l'événement A : "obtenir le nombre 8" est un événement impossible.
Formule. Le nombre de combinaisons des n éléments d'un ensemble E pris k à la fois est donné par la relation suivante : Ckn=n!k! (n−k)!
Pour calculer la probabilité d'un événement, vous pouvez simplement utiliser la formule générale de probabilité : P = n/N. Vous devez donc connaître le nombre d'issues favorables et le nombre total d'issues possibles.
On utilise la formule des probabilités totales pour calculer une probabilité p\left(F\right) lorsque la réalisation de F dépend de la réalisation d'autres événements. Une usine fabrique 80% de composés A et 20% de composés B. Un centième des composés A et 5% des composés B sont défectueux.
La somme des probabilités de tous les événements élémentaires est égale à 1. Un événement impossible a pour probabilité 0. Un événement certain a pour probabilité 1 . Deux événements contraires sont des événements dont la réunion est l'événement certain et l'intersection vide.
Les probabilités peuvent être exprimées en fractions, décimales et pourcentages. Par exemple, il peut être impossible qu'une chose se produise. On pourrait alors dire que la probabilité est de zéro. On peut aussi être absolument certain qu'une chose se produise.
La probabilité d'un événement est la somme des probabilités des événements élémentaires qui le réalisent. La somme des probabilités de tous les événements élémentaires d'une expérience aléatoire est égale à 1.
On calcule la probabilité d'une issue en multipliant les probabilités inscrites sur les branches qui mènent à elle. Par exemple, la probabilité d'obtenir 3 fois pile est 0,43=0,064. La probabilité d'obtenir pile puis face puis pile est 0,4×0,6×0,4=0,096. La probabilité d'obtenir 3 fois face est 0,6×0,6×0,6=0,216.
Une loi de probabilité est une distribution théorique de fréquences. Soit Ω un ensemble muni d'une probabilité P. Une variable aléatoire X est une application définie sur Ω dans ℝ. X permet de transporter la loi P en la loi P' définie sur Ω′=X(Ω) : on a P′(xj)=P(X−1(xj))=P(X=xj).
Probabilité en pourcentage
La conversion s'effectue en multipliant le nombre décimal par 100. Le résultat de la multiplication est un pourcentage compris entre 0 et 100. La multiplication de 0,5 par 100 est égale à 50. La probabilité en pourcentage d'obtenir un nombre pair est de 50 %.
La probabilité d'obtenir au moins un six est donc 1−(56)n 1 − ( 5 6 ) n . Soit A A l'événement "obtenir au maximum une fois le chiffre 6". Alors A A est la somme des événements disjoints A0 A 0 ="ne jamais obtenir six" et A1 A 1 ="obtenir exactement 1 1 fois le chiffre 6".
La probabilité de la réalisation consécutive des évènements indépendants A et B est donnée par P(A∩B)=P(A)×P(B). P ( A ∩ B ) = P ( A ) × P ( B ) .
P(A/B) désigne la probabilité que A se réalise sachant que B s'est réalisé. P(A ET B) = P(A) ´ P(B/A) = P(B) ´ P(A/B).
Pour le construire, on part d'une origine que l'on nomme racine de l'arbre, puis on construit les branches qui mènent aux feuilles appelées nœuds, c'est-à-dire à tous les événements possibles. Sur chacune des branches on indique la probabilité de l'événement correspondant, on appelle cela le poids de la branche.
En pratique, pour calculer une probabilité avec une loi binomiale, On repère bien les valeurs de n, p et k. On écrit la formule P(X=k)=(nk)×pk×(1−p)n−k avec les valeurs précédentes.
Selon la formulation de la question, il y a 2 calculs possibles. Si on cherche la probabilité d'un choix ou d'un autre choix, on additionne les probabilités de chaque choix possible. Si on cherche la probabilité d'un choix et d'un autre choix, on multiplie les probabilités de chaque choix possible.
Événement probable. Synonyme : conjecture, hypothèse, possibilité, vraisemblance.
Une combinaison est une sélection de 𝑘 éléments choisis sans répétition parmi un ensemble de 𝑛 éléments pour laquelle l'ordre n'a pas d'importance. La principale différence entre une combinaison et un arrangement est que l'ordre n'a pas d'importance. Pour un arrangement, l'ordre est important.
Définition : Un arrangement est une permutation de k éléments pris parmi n éléments distincts (k ⩽ n). Les éléments sont pris sans répétition et sont ordonnés. Notation : le nombre de permutations de k parmi n est noté An,k.
Le coefficient binomial (qu'on lit « k parmi n ») est le nombre de parties de k éléments distincts dans un ensemble de n éléments (sans tenir compte de l'ordre).