En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal.
Plus précisément, une dérivée est une expression (numérique ou algébrique) donnant le rapport entre les variations infinitésimales de la fonction et les variations infinitésimales de son argument. Par exemple, la vitesse. est la dérivée. du déplacement.
Si une fonction "f" est dériable sur un intervalle I alors: Si sa dérivée est positive sur cet intervalle alors la fonction y est croissante. Si sa dérivée est négative sur cet intervalle alors la focnction y est décroissante. Si sa dérivée est nulle sur cet intervalle alors la fonction y est constante.
La dérivée d'une fonction permet : De calculer le coefficient directeur et donc l'équation d'une tangente. De déterminer, avant de faire un graphique, les intervalles où la fonction est croissante ou décroissante.
Pour la retenir, la meilleur façon à mon avis est de la comparer à la dérivée d'une fonction quelconque u(x). Ici x est la variable et on note toujours (u(x))' = u'(x). Rien de nouveau. Maintenant, quand on compose 2 fonctions, on a u(v) où cette fois v est une fonction qui en fait s'écrit v(x).
La dérivée de 1 est nulle, car c'est une constante.
La dérivée de 2x est égale à 2.
Re : Dérivée = 0
Si une dérivée est nulle en tout point, c'est que la fonction est contante, c'est-à-dire que pour tout x, f(x)=k avec k un réel.
Naissance de la notion de dérivée : Sir Issac Newton et Gottfried Wilheim Leibniz (fin du XVIIè s.)
Re : Différentielle et dérivée
Ce qu'il faut retenir : la différentielle en un point est une application linéaire, alors que la dérivée en un point est un nombre.
Comme la dérivée en un point représente la pente de la tangente à la courbe représentative en ce point, on en déduit que si on ne peut pas définir de tangente à la courbe représentative, la dérivée n'existe pas.
Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.
La dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération.
égal à : f (a + h) − f (a) a + h − a = f (a + h) − f (a) h . tend vers 0. Ce coefficient directeur s'appelle le nombre dérivé de f en a.
Définition : Soit f une fonction polynôme du second degré définie sur ℝ par f(x) = ax2 +bx + c . On appelle fonction dérivée de f, notée f ', la fonction définie sur ℝ par f '(x) = 2ax +b.
La notation f′ (qui se lit f prime ) pour désigner la dérivée de la fonction f est due au mathématicien français Lagrange (1736 - 1813). Cette notation est la plus usuelle et la plus simple si la fonction étudiée est une fonction d'une seule variable.
Une notation possible pour sa dérivée est df dx (on parle de «notation différentielle»). f(x + h) − f(x) (x + h) − x . On a au dénominateur une «petite» variation de x (celui-ci varie de h, qui tend vers 0), et au numérateur, la variation de f lorsque x subit cette variation.
Re : Dérivée par rapport au temps
La dérivée d'une fonction f(x) par rapport à x telle que f(x) = ax est f' = a = cste. Ici on a p(t) = 0.2t donc p'(x) = 0.2 = cste.
Re : Dérivée en physique
la dérivée d'une fonction par rapport à une variable, c'est l'expression de la variation de cette fonction par rapport à cette variable.
La fonction exponentielle est dérivable sur Ë. Elle est sa propre dérivée, ce qui signifie que, quel que soit x : exp'(x) = exp (x) Si f(x) = ex, alors f'(x) = ex. Dem : ln ( exp (x) ) = x, les dérivées de ces deux fonctions sont donc toutes les deux égales à 1. d'où exp'(x) = exp(x).
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Le nombre dérivé au point x du produit u.v est égal à u(x) . v'(x) + u'(x) .
dérivée d'une fraction
La dérivée d'une "fraction" est: la dérivée du numérateur • le dénominateur – le numérateur • la dérivée du dénominateur, le tout divisé par le carré du dénominateur.
On s'explique : Si f(x) = x²+1, alors on note sa dérivée f ' (x) = 2x +0, soit 2x. Prenons l'exemple de f(x) = 10x²+5x +2 : on obtient f ' (x) = 10*2x2-1+5, soit f ' (x) = 20x +5 : la dérivée d'une constante est nulle. On calcule chaque dérivée avec puissances de cette manière, donc si f(x) = x3, alors f ' (x) = 3x².
Une fonction constante d'une variable réelle est représentée par une droite parallèle à l'axe des abscisses. La dérivée d'une fonction constante est nulle.