C'est tout simplement un nombre, une lettre ou une expression (avec des parenthèses) que l'on retrouve dans chacun des termes. Par exemple dans 6x + 6y, le facteur commun est 6 puisqu'il y a 6 dans 6x et dans 6y. Dans 9(x + 3) – (x + 5)(x + 3), le facteur commun est (x + 3).
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. Exemples d'expressions non factorisées : Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
Factorisation : la forme canonique se factorise grâce à l'identité a2−b2 a 2 − b 2 =(a−b)(a+b). = ( a − b ) ( a + b ) . ⇔f(x)=2(x−3)(x+2). ⇔ f ( x ) = 2 ( x − 3 ) ( x + 2 ) .
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)².
Si on développe le produit (a+b)(a-b), on obtient a²-b². Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit.
La première égalité remarquable : (a+b)² = a² + 2ab + b² ; La deuxième égalité remarquable : (a-b)² = a² – 2ab + b² ; (a+b)²; La troisième égalité remarquable : (a+b) (a-b) = a² – b².
La forme factorisée sert essentiellement à résoudre des équations et inéquations du second degré. La forme canonique sert à étudier les variations ou trouver un extremum (minimum ou maximum).
Pour factoriser, on utilisera les mêmes formules, mais dans le sens inverse : (a+b)² = a² + 2ab + b² (a-b)² = a² - 2ab +b²
Pour calculer une expression sans parenthèses, on effectue les divisions et les multiplications avant les additions et soustractions . Quand une expression comporte plusieurs multiplications ou divisions , on effectue d'abord le calcul le plus à gauche . De même pour les additions ou soustractions.
Petite astuce vous pouvez trouver le facteur commun entre 32 et 16 en divisant le plus gros membre par le plus petit -> 32/16 = 2 donc on peut prendre 16 pour facteur commun. Pour "x" il y aura un seul 16 (1x16=16) , et pour "y" il y en aura deux ( 2x16=32).
Factoriser, c'est transformer une somme ou une différence en un produit. En effectuant une lecture de droite vers la gauche des formules de distributivité, on a : k × a + k × b = k × (a + b). k × a − k × b = k × (a − b).
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Réduire une expression littérale, c'est regrouper les termes « semblables » et effectuer les calculs. Exemples : ➢ A = 12x + 7 – 4x − 3 + 2xy ➢ A = 12x – 4x + 7 − 3 + 2xy Les termes « semblables » ici sont les nombres. B = 15a + 3b + ab et B ne peut pas être plus réduit.
Développer un produit, c'est l'écrire sous forme d'une somme ou d'une différence. Réduire une expression littérale, c'est l'écrire avec le moins de termes possibles. Factoriser une somme (ou une différence) c'est l'écrire sous forme d'un produit.
Une équation du second degré est une équation dont la forme développée est 𝑎 𝑥 + 𝑏 𝑥 + 𝑐 = 0 , où 𝑥 est la variable 𝑎 , 𝑏 et 𝑐 sont des constantes telles que 𝑎 ≠ 0 .
La formule :e i π + 1 = 0 est ainsi démontrée par le mouvement d'un point sur un cercle.
L'équation de Navier-Stoke, le mystère non résolu
Moins célèbre qu'E=MC2, l'équation de Navier-Stoke qui fascine autant les physiciens que les mathématiciens, vise à décrire le mouvement des fluides ou plus précisément son champ de vitesse.
L'identité a^3 + b^3 = (a + b)(a² - ab + b²). Créés par Sal Khan et Monterey Institute for Technology and Education.
Les trois formules suivantes sont à retenir : F1 : (a + b)2 = a2 + 2 × a × b + b2. F2 : (a − b)2 = a2 − 2 × a × b + b2.
L'identité a^3 - b^3 = (a - b)(a² + ab + b²).
Réécrivez 36 comme 62 . Les deux termes étant des carrés parfaits, factorisez à l'aide de la formule de la différence des carrés, a2−b2=(a+b)(a−b) a 2 - b 2 = ( a + b ) ( a - b ) où a=x et b=6 .