Il existe plusieurs méthodes pour évaluer la normalité, notamment le test de normalité de Kolmogorov-Smirnov (K-S) et le test de Shapiro-Wilk. L'hypothèse nulle de ces tests est que “la distribution de l'échantillon est normale”. Si le test est significatif, la distribution est non-normale.
Le principe est simple. On mesure l'écart maximum qui existe entre la fonction de répartition observée (ou tout simplement des fréquences cumulées) et la fonction de répartition théorique. Sous l'hypothèse H0, cet écart est faible et la répartition des observations s'intègre bien dans une distribution donnée.
Le test de Shapiro-Wilk est un test permettant de savoir si une série de données suit une loi normale. Un outil web pour faire le test de Shapiro-Wilk en ligne, sans aucune installation, est disponible ici. Hypothèse nulle : l'échantillon suit une loi normale.
Ils testeront la normalité des résidus avec un test comme le test de Shapiro-Wilk, ils testeront l'homoscédasticité des résidus avec un test comme le test de Fisher-Snedecor. Dans la plupart des cas, les tests leur révéleront que les résidus ne sont ni gaussiens, ni homoscédastiques.
Les propriétés d'une distribution normale sont : La fonction de densité de probabilités de la loi normale a la forme d'une courbe en cloche symétrique. la moyenne et la médiane sont égales ; la courbe est centrée sur la moyenne.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).
Appliquer une transformation log, racine carrée ou de type Box Cox sur la réponse afin d'améliorer la normalité des résidus, et refaire tourner le modèle de régression linéaire en appliquant la transformation.
test: Fonction R pour faire le test de student. La fonction R à utiliser pour faire le test-t de student est t. test(). Elle permet de faire les différents types du test de student mentionnés ci-dessus.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Le plus célèbre test de corrélation, ou coefficient de corrélation linéaire de Pearson, consiste à calculer le quotient de la covariance des deux variables aléatoires par le produit de leurs écarts-types. Il s'agit donc d'un test de variables quantitatives.
Ce test est souvent utilisé pour valider l'hypothèse de leur égalité (appelée homoscédasticité1). La comparaison des variances s'avère donc utile comme test complémentaire lorsqu'on souhaite tester l'égalité de deux moyennes (cas des petits échantillons indépendants).
Le test de Shapiro-Wilk (W) est utilisé pour tester la normalité. Si la statistique W est significative, il faut alors rejeter l'hypothèse selon laquelle la distribution correspondante est normale.
Les 2 tests “classiques” de normalité d'une variable sont le test de Kolmogorov-Smirnov et le test de Shapiro-Wilk, tous les deux implémentés dans R par le biais des fonctions ks. test() et shapiro.
Les tests non-paramétriques ne se basent pas sur des distributions statistiques. Ils peuvent donc être utilisés même si les conditions de validité des tests paramétriques ne sont pas vérifiées. Les tests paramétriques ont souvent des tests non-paramétriques équivalents.
Les tests de conformité sont destinés à vérifier si un échantillon peut être considéré comme extrait d'une population donnée ou représentatif de cette population, vis-à-vis d'un paramètre comme la moyenne, la variance ou la fréquence observée.
Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon. Tous ces tests sont dits non paramétriques car ils ne nécessitent pas d'estimation de la moyenne et de la variance.
Il s'agit d'une variable numérique. Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche).
Il se calcule comme suit : W = X2/N(K-1) ; où W est la valeur W de Kendall ; X2 est la valeur statistique du test de Friedman ; N est la taille de l'échantillon. k est le nombre de mesures par sujet (M. T. Tomczak and Tomczak 2014).
Vous utilisez un test du khi-deux pour tester des hypothèses afin de déterminer si les données sont conformes aux attentes. L'idée de base qui sous-tend le test est de comparer les valeurs observées dans vos données aux valeurs attendues si l'hypothèse nulle est vraie.
On trace les points de coordonnées (xi ; ti). Les points paraissent alignés ; la droite coupe l'axe des abscisses au point d'abscisse 11 et le coefficient directeur 1/σ est (0,842 +1,28)/12 environ, ce qui donnerait un écart type σ de 12/2,12 = 5,7.
Interprétation. Sachant que l'hypothèse nulle est que la population est normalement distribuée, si la p-value est inférieure à un niveau alpha choisi (par exemple 0.05), alors l'hypothèse nulle est rejetée (i.e. il est improbable d'obtenir de telles données en supposant qu'elles soient normalement distribuées).