Attention, la formule qui permet de calculer une longueur dans un repère n'est valable que dans un repère orthonormé (axes perpendiculaires et graduation identique sur les deux axes). A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
Placer le point dans le repère
Le point d'intersection des 2 droites est la position du point A dans le repère. Tous les points sur la droite verte ont pour abscisse 2. Tous les points sur la droite rouge ont pour ordonnée -3. Le point d'intersection des 2 droites est l'unique point de coordonnées (2;-3).
Dans un plan muni d'un repère orthogonal, la position d'un point A est définie par deux nombres relatifs qui sont ses coordonnées : la première a est l'abscisse de ce point et la deuxième b son ordonnée. On note A(a ; b). Le point O de coordonnées (0 ; 0) est l'origine du repère orthogonal.
Cliquez sur l'>repères de > la grille et les repères de ligne de base. Cliquez sur l'onglet Repères de marge. Sous Pages maîtres,cochez la case Pages maîtres doubles. Sous Repères demarge, entrez l'espace que vous souhaitez pour les marges de page dans les zones Intérieur,Extérieur,Hautet Bas.
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Dans un repère orthonormé, l'abscisse xA d'un point A correspond à la valeur obtenue par projection de ce point sur l'axe horizontal (l'axe des abscisses). L'ordonnée yA d'un point A correspond à la valeur obtenue par projection de ce point sur l'axe vertical (l'axe des ordonnées).
Grâce à ce repérage, on peut ensuite manipuler ces objets : effectuer des symétries, résoudre des problèmes, ... On construit un repère à partir d'un point que l'on choisit (appelé origine du repère). À partir de ce point, on définit des axes, c'est-à-dire des droites graduées (comme des règles).
"Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Considérons deux points p et p de coordonnées res- pectives (x, y) et (x ,y ). Leur distance euclidienne est donnée par la formule p−p = √ (x − x )2 + (y − y )2.
Se repérer dans un plan
Pour localiser un élément dans un plan, il faut un repère, souvent constitué de deux axes qui se croisent : l'axe horizontal que l'on appelle l'axe des abscisses. l'axe vertical que l'on appelle l'axe des ordonnées et le point d'intersection, qu'on appelle l'origine (O) du repère.
Définition Calcul de la longueur
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
Le temps est égal à la distance divisée par la vitesse.
Pour cela, il est nécessaire de connaître la mesure d'un angle et la longueur du côté opposé ou de l'hypoténuse. Pour calculer la longueur d'un côté, on utilise le calcul en croix. AC = AB× tan ABC = 5 × tan 45° = 5 Enfin, on peut utiliser la tangente pour calculer des angles au sein d'un triangle rectangle.
Définition : Le nombre associé à un point sur une demi-droite graduée est l'abscisse de ce point. L'origine O de la demi-droite a pour abscisse 0. A est le point d'abscisse 1. Le point B a pour abscisse 2,5.
L'abscisse d'un point correspond au nombre d'unités de graduation entre l'origine (O) et le point. Tu peux donc déterminer l'abscisse d'un point en comptant les unités de graduation à partir de l'origine. Il y a 2 unités de graduation entre l'origine et le point C. Le point C a pour abscisse 2, on note C(2).
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Définition : Coordonnées d'un point dans l'espace
Tout point dans l'espace aura des coordonnées 𝑥 , 𝑦 et 𝑧 et pourra être écrit sous la forme ( 𝑥 ; 𝑦 ; 𝑧 ) . Chacun des nombres réels dans le triplet ordonné donne la distance à l'origine mesurée le long de l'axe correspondant.
On utilisera un repère constitué des trois axes Ox, Oy et Oz, qui délimitent trois plans. Dans ce système de coordonnées cartésien, un point de l'espace sera noté ( x ; y ; z ).
Un repère du plan est défini par trois points non alignés (O,I,J). Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées. On peut aussi définir un repère à l'aide des vecteurs. Si on pose le repère sera noté avec deux vecteurs non colinéaires.
Si les deux vecteurs ont la même longueur, on dit que le repère est normé. Et si les deux vecteurs sont perpendiculaires et s'ils ont la même longueur alors le repère est dit orthonormé. L'axe Ox porte le nom d'axe des abscisses et l'axe Oy porte le nom d'axe des ordonnées.
Le repérage dans le plan cartésien
La position d'un point est donnée par un couple de nombres, les coordonnées (x,y) . Le premier nombre du couple correspond à la position horizontale du point (sa valeur sur l'axe des x ) alors que le deuxième nombre correspond à sa position verticale (sa valeur sur l'axe des y ).