Un trou de ver formerait un raccourci à travers l'espace-temps. Pour le représenter plus simplement, on peut figurer l'espace-temps non en quatre dimensions mais en deux, à la manière d'un tapis ou d'une feuille de papier, dont la surface serait pliée sur elle-même dans un espace à trois dimensions.
En fait, la ressemblance n'est valable que pendant un certain temps. Contrairement aux trous noirs, les trous de ver émettent ensuite un écho, en fin de désexcitation.
Selon la théorie de la gravité quantique à boucles, les trous blancs seraient le destin ultime des trous noirs. La matière qui s'est effondrée dans un trou noir ressort alors de l'astre lorsque celui-ci se transforme en trou blanc.
L'existence de tels phénomènes n'a jamais été prouvée ni observée : les trous de ver n'existent donc théoriquement pas, du moins pour le moment. Le mot anglais « wormhole » (littéralement trou de ver (de terre)) est souvent employé comme synonyme de « trou de ver ».
Selon une étude parue dans Classical and Quantum Gravity, un voyage dans le temps sans paradoxe est mathématiquement possible. La question du voyage dans le temps fait encore débat chez les physiciens.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
Comme l'infini dans la nature, ça n'existe pas, on en déduit une chose, c'est qu'on ne sait pas. On pense que toute matière ordinaire a disparu. Dans le trou noir, il n'y a donc pas, après cette aventure, une fusée et un spationaute égaré de plus. Il y a toujours le vide.
Passée cette limite, il n'y a pas de retour envisageable. La force de gravitation y devient tellement importante que même la lumière, à la vitesse de déplacement avoisinant les 300 000 kilomètres par seconde, est déviée pour se diriger vers le centre du trou noir, où toute la matière se concentre à l'infini.
La force gravitationnelle du trou noir est si forte que le temps sur cette exoplanète s'écoule plus lentement avec un ratio de 1 heure pour 7 années terrestres.
Le physicien autrichien Ludwig Flamm (1885-1964) est parfois présenté comme étant le premier à avoir suggéré, dès 1916, l'existence des trous de ver. Mais la communauté scientifique s'accorde pour considérer que leur existence n'a été suggérée qu'en 1935, par Albert Einstein et Nathan Rosen.
Un trou de ver est un objet théorique, solution des équations de la relativité générale, qui connecte deux régions éloignées de l'Univers. Quel est le lien entre une chute d'eau et un trou noir ? Dans les deux cas, il existe une frontière invisible qui, une fois franchie, vous condamne à un voyage sans retour.
Un trou noir est créé après la mort d'une étoile très massive. Le noyau de l'étoile s'effondre sur lui-même, ce qui entraine l'expulsion des couches externes de l'étoile en une gigantesque explosion : une supernova. Tout le reste de la matière se concentre en un petit point appelé singularité.
1783 : dans le cadre de la théorie corpusculaire de la lumière, John Michell énonce la première notion de trou noir newtonien (en se servant des lois de Newton de la gravitation).
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
On peut y entendre un chant mystérieux qui évoque le bruit du vent soufflant au loin. L'astrophysicien spécialiste des trous noirs Frédéric Marin a décrit ce son comme étant « profond, lourd, comme le bruit du vent au fond d'un abîme ».
Par rapport à un observateur situé loin du trou noir, tous les phénomènes se passant à proximité du trou noir semblent se dérouler plus lentement. Une horloge avancerait à un rythme plus lent. En quelque sorte, donc, les trous noirs ralentissent le temps.
Dans l'éventualité très improbable qu'un trou noir s'approche de notre système solaire, l'humanité périrait fort probablement bien avant qu'il n'avale la Terre ou le Soleil, selon une analyse publiée en 2016 sur le site de nouvelles scientifiques phys.org.
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
C'est mission impossible. Le trou noir, c'est une sphère… noire dont aucun rayon lumineux ne peut sortir. En revanche, la matière qu'il aspire forme un disque très lumineux autour de lui.
Imaginons que l'on puisse avoir un trou noir équivalent à une masse solaire, même si ce n'est pas possible (il faut une masse minimale pour que les trous noirs puissent se former, située entre 3 et 5 masses solaires). Sa température serait « de l'ordre d'un dix-millionième de kelvins ».
Quelle est la durée de vie d'un trou noir ? Stephen Hawking a mis en évidence un paradoxe : les trous noirs ne le sont pas totalement, car ils émettent des particules et peuvent s'évaporer, jusqu'à disparaitre totalement. Ce phénomène se produit sous la forme d'un rayonnement, appelé rayonnement de Hawking.
À vrai dire, on ne sait pas encore. À ce jour, avec la physique dont nous disposons, les tentatives pour prouver l'impossibilité de voyager dans le passé, y compris les travaux de Stephen Hawking n'ont pas abouties : on n'a pas réussi à prouver que le voyage dans le passé était impossible.
"L'astuce", expliquent les deux scientifiques, est d'utiliser la courbure de l'espace-temps dans l'Univers pour "plier le temps" de sorte à former en cercle temporel. Un passager assis dans la boite temporelle pourrait alors avancer dans le futur et revenir en arrière, rapporte Science Alert.