L'écart-type ne peut pas être négatif. Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
Pour calculer l'écart-type, on procède ainsi : 1 - On calcule la moyenne arithmétique de la série. 2 - On calcule le carré de l'écart à la moyenne de chacune des valeurs de la série. 3 - On calcule la somme des valeurs obtenues.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
S'il génère une valeur p inférieure ou égale au niveau de signification, un résultat est alors défini comme statistiquement significatif et ne sera donc pas considéré comme un événement fortuit. Cela est généralement écrit sous la forme suivante : p≤0,05.
L'écart type sert à calculer l'intervalle de confiance et la valeur de p. Une valeur d'écart type élevée indique que les données sont dispersées. Plus la valeur est élevée, moins les intervalles de confiance sont précis (ils sont plus étendus) et moins les tests sont puissants.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
– La manière la plus simple de diminuer l'écart type de l'estimation est d'augmenter le nombre d'observations, c'est-à-dire la taille de l'échantillon si on est dans un contexte de sondage.
L'analyse de variance permet simplement de répondre à la question de savoir si tous les échantillons suivent une même loi normale. Dans le cas où l'on rejette l'hypothèse nulle, cette analyse ne permet pas de savoir quels sont les échantillons qui s'écartent de cette loi.
La variance mesure la manière dont des points de données varient par rapport à la moyenne, tandis que l'écart type mesure la distribution de données statistiques. Penchons-nous sur un exemple. Deux groupes d'étudiants ont répondu à un questionnaire noté sur 10 points.
Les indices de dispersion : donnent des renseignements sur la dispersion et la variabilité dans un groupe, à savoir à quel point les valeurs de la distributions sont homogène ( si les valeurs sont proches de la moyenne ou pas) et hétérogène ( si écart entre la moyenne et les valeur extrême est trop important).
Un écart-réduit négatif signifie que l'observation est inférieure à la moyenne. Un écart-réduit proche de 0 signifie que l'observation est proche de la moyenne. Une observation est considérée comme atypique si son écart-réduit est supérieur à 3 ou inférieur à −3 .
L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
La moyenne d'une série est toujours comprise entre la plus petite valeur et la plus grande valeur de la série. Pour calculer la moyenne pondérée d'une série statistique présentée dans un tableau d'effectifs ou par un diagramme en bâtons : • On multiplie chaque valeur par l'effectif correspondant.
Le coefficient de variation (CV) est le rapport de l'écart-type à la moyenne. Plus la valeur du coefficient de variation est élevée, plus la dispersion autour de la moyenne est grande. Il est généralement exprimé en pourcentage.
Plus l'écart relatif est petit, plus la grandeur mesurée est satisfaisante car elle est proche de la grandeur de référence attendue. Cet écart s'exprime de préférence en pourcentage (%) et est toujours positif : le calcul change donc en fonction de la grandeur la plus grande.
1- Lire les informations apportées par les axes. 2- Repérer sur la courbe les points remarquables (maximum, minimum, point d'inflexion). 3- Découper la courbe en plusieurs parties. 4- Justifier chaque partie par des données chiffrées qui indiquent comment évolue le paramètre mesuré par rapport au paramètre qui a varié.
Globalement, présenter les résultats d'une enquête exprime de manière concise et synthétique le contexte, les raisons de l'enquête puis ses méthodes, ses résultats et ses conclusions principales, puis les discute, en imagine les prolongements (2).